@incollection{AST_1993__217__227_0,
author = {Shaw, Mei-Chi},
title = {Semi-global existence theorems of $\bar{\partial}_b$ for $( 0, n-2 )$ forms on pseudo-convex boundaries in $\mathbb{C}^n$},
booktitle = {Colloque d'analyse complexe et g\'eom\'etrie - Marseille, janvier 1992},
series = {Ast\'erisque},
pages = {227--240},
year = {1993},
publisher = {Soci\'et\'e math\'ematique de France},
number = {217},
language = {en},
url = {https://www.numdam.org/item/AST_1993__217__227_0/}
}
TY - CHAP
AU - Shaw, Mei-Chi
TI - Semi-global existence theorems of $\bar{\partial}_b$ for $( 0, n-2 )$ forms on pseudo-convex boundaries in $\mathbb{C}^n$
BT - Colloque d'analyse complexe et géométrie - Marseille, janvier 1992
AU - Collectif
T3 - Astérisque
PY - 1993
SP - 227
EP - 240
IS - 217
PB - Société mathématique de France
UR - https://www.numdam.org/item/AST_1993__217__227_0/
LA - en
ID - AST_1993__217__227_0
ER -
%0 Book Section
%A Shaw, Mei-Chi
%T Semi-global existence theorems of $\bar{\partial}_b$ for $( 0, n-2 )$ forms on pseudo-convex boundaries in $\mathbb{C}^n$
%B Colloque d'analyse complexe et géométrie - Marseille, janvier 1992
%A Collectif
%S Astérisque
%D 1993
%P 227-240
%N 217
%I Société mathématique de France
%U https://www.numdam.org/item/AST_1993__217__227_0/
%G en
%F AST_1993__217__227_0
Shaw, Mei-Chi. Semi-global existence theorems of $\bar{\partial}_b$ for $( 0, n-2 )$ forms on pseudo-convex boundaries in $\mathbb{C}^n$, dans Colloque d'analyse complexe et géométrie - Marseille, janvier 1992, Astérisque, no. 217 (1993), pp. 227-240. https://www.numdam.org/item/AST_1993__217__227_0/
1. and , Convexity and the H. Lewy problem. I and II., Ann. Scuola Norm. Sup. Pisa 26 (1972), 325-363
and , Convexity and the H. Lewy problem. I and II., Ann. Scuola Norm. Sup. Pisa 26 (1972), 747-806.
2. and , Levi flat hypersurfaces which are not holomprphically flat, Pro. A.M.S. (1981), 575-578.
3. and , Domains with pseudoconvex neiborhood systems, Invent. Math. 47 (1978), 1-27.
4. and , A kernel approach to local solvability of the tangential Cauchy-Riemann equations, Trans. Amer. Math. Society 289 (1985), 643-659.
5. , Boundary behavior of holomorphic functions on pseudoconvex domains, J. of differential Geometry 15 (1980), 605-625.
6. , Global regularity of the -Neumann problem, Pro. Symp. pure Math. 41 (1984), 39-49.
7. , Subelliptic estimates for the -Neumann problem on pseudo-convex domains, Ann. of Math. 126 (1987), 131-191.
8. , Real hypersurfaces, orders of contact, and applications, Ann. of Math. 115 (1982), 615-637.
9. and , The Neumann problem for the Cauchy Riemann complex, vol. 75, Ann. of Math. Studies, Princeton Univ. Press, Princeton, N.J., 1972.
10. , The Lewy equation and analysis on pseudoconvex manifolds, Uspheki Mat. Nauk 32 (1977), 57-118 English transl. in Russ. Math. Surv., 32, 1977, 59-130.
11. , Linear partial differential operators, Springer-Verlag, New york, 1963.
12. , estimates and existence theorems for the operator, Acta Math. 113 (1965), 89-152.
13. , On the local character of the solution of an atypical differential equation in three variables and related proble for regular functions of two complex variables, Ann. Math. 64 (1956), 514-522.
14. , Global regularity for on weakly pseudo-convex manifolds, Trans. of A. M. S. 181 (1973), 273-292.
15. , Subellipticity of the -Neumann problem on pseudoconvex domains: Sufficient conditions, Acta Math. 142 (1979), 79-122.
16. and , On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math. 81 (1965), 451-472.
17. and , Nonexistence of homotopy formula for forms on hypersurfaces in , Duke Math. Jour. 58 (1989), 823-827.
18. , Equation de Lewy-résolubilite globale de l'équation sur la frontiére de domaines faiblement pseudo-convexes de (ou ), Duke Math. J. 49 (1982), 121-128.
19. , Some applications of Cauchy-Fantappie forms to (local) problems on , Ann. Scuola Normale Sup. Pisa 13 (1986), 225-243.
20. , estimates for local solutions of on strongly pseudo-convex manifolds, Math. Ann. 288 (1990), 35-62.
21. , existence theorems for the -Neumann problem on strongly pseudoconvex manifolds, Jour. Geometric Analysis 1 (1991), 139-163.
22. , Local existence theorems with estimates for on weakly pseudoconvex manifolds, Math. Ann. 294 (1992), 677-700.
23. , Homotopy formulas in the tangential Cauchy-Riemann complex, Memoirs of the Amer. Math. Society, Providence, Rhode Island.
24. , On the local solution of the tangential CauchyRiemann equations, Ann. Inst Henri Poicaré 6 (1989), 167-182.
25. , On the proof of Kuranishi's embedding theorem, Ann. Inst H. Poincaré 6 (1989), 183-207.







