@incollection{AST_1992__210__75_0,
author = {Boutet de Monvel-Berthier, Anne and Georgescu, Vladimir},
title = {Graded $C^\ast$-algebras and many-body perturbation theory : {II.} {The} {Mourre} estimate},
booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)},
series = {Ast\'erisque},
pages = {75--96},
year = {1992},
publisher = {Soci\'et\'e math\'ematique de France},
number = {210},
language = {en},
url = {https://www.numdam.org/item/AST_1992__210__75_0/}
}
TY - CHAP AU - Boutet de Monvel-Berthier, Anne AU - Georgescu, Vladimir TI - Graded $C^\ast$-algebras and many-body perturbation theory : II. The Mourre estimate BT - Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) AU - Collectif T3 - Astérisque PY - 1992 SP - 75 EP - 96 IS - 210 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1992__210__75_0/ LA - en ID - AST_1992__210__75_0 ER -
%0 Book Section %A Boutet de Monvel-Berthier, Anne %A Georgescu, Vladimir %T Graded $C^\ast$-algebras and many-body perturbation theory : II. The Mourre estimate %B Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) %A Collectif %S Astérisque %D 1992 %P 75-96 %N 210 %I Société mathématique de France %U https://www.numdam.org/item/AST_1992__210__75_0/ %G en %F AST_1992__210__75_0
Boutet de Monvel-Berthier, Anne; Georgescu, Vladimir. Graded $C^\ast$-algebras and many-body perturbation theory : II. The Mourre estimate, dans Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 75-96. https://www.numdam.org/item/AST_1992__210__75_0/
[ABG1] , and , Notes on the -Body Problem, I, Preprint Université de Genève, UGVA-DPT 1988/11-598.
[ABG2] , and , Notes on the -Body Problem, II, Preprint Université de Genève, UGVA-DPT 1991/04-718, p.164-424.
[BG1] and , Graded -Algebras and Many-Body Perturbation Theory. I. The -Body Problem, C. R. Acad. Sci. Paris, 312, Serie I, p.477-482, 1991.
[BG2] and , Graded -Algebras in the -Body Problem, J. Math. Phys., 32, n° 11 (1991), p.3101-3110.
[BGM] , and , Locally Smooth Operators and the Limiting Absorption Principle for N-Body Hamiltonians, Rev. in Math. Phys. (1992), to appear - preprint Universität Bielefeld, BIBOS, n°433/1990, p.1-101].
[C] , On the Compactness of Commutators of Multiplications and Convolutions, and Boundedness of Pseudo-Differential Operators, J. Funct. Analysis, 18 (2) (1975), p.115-132.
[D1] , A New Proof of the Propagation Theorem for N-Body Quantum Systems, Comm. Math Phys., 122 (1989), p.203-231.
[D2] , The Mourre Estimate for Dispersive N-Body Schrödinger Operators, Preprint Virginia Polytechnic Institute, 1988.
[C] , The Mourre Estimate for Regular Dispersive Systems, Ann. Inst. Henri Poincaré, 54 (1) (1991), p.59-88.
[FH] and , A New Proof of the Mourre Estimate, Duke Math J., 49 (1982), p.1075-1085.
[HP] and , Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, R.I. 1957.
[PSS] , and , Spectral Analysis of -Body Schrödinger Operators, Ann. Math., 114 (1981), p.519-567.
[S] , Geometric Methods in Multiparticle Quantum Systems, Comm. Math. Phys., 55 (1977), p.259-274.
[T] , Propagation Estimates for -body Quantum Systems, Bull. Fac. Sci. Ibaraki Univ., 22 (1990), p.29-48.







