@incollection{AST_1992__210__135_0,
author = {Helffer, B. and Sj\"ostrand, J.},
title = {Semiclassical expansions of the thermodynamic limit for a {Schr\"odinger} equation},
booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)},
series = {Ast\'erisque},
pages = {135--181},
year = {1992},
publisher = {Soci\'et\'e math\'ematique de France},
number = {210},
language = {en},
url = {https://www.numdam.org/item/AST_1992__210__135_0/}
}
TY - CHAP AU - Helffer, B. AU - Sjöstrand, J. TI - Semiclassical expansions of the thermodynamic limit for a Schrödinger equation BT - Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) AU - Collectif T3 - Astérisque PY - 1992 SP - 135 EP - 181 IS - 210 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1992__210__135_0/ LA - en ID - AST_1992__210__135_0 ER -
%0 Book Section %A Helffer, B. %A Sjöstrand, J. %T Semiclassical expansions of the thermodynamic limit for a Schrödinger equation %B Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) %A Collectif %S Astérisque %D 1992 %P 135-181 %N 210 %I Société mathématique de France %U https://www.numdam.org/item/AST_1992__210__135_0/ %G en %F AST_1992__210__135_0
Helffer, B.; Sjöstrand, J. Semiclassical expansions of the thermodynamic limit for a Schrödinger equation, dans Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 135-181. https://www.numdam.org/item/AST_1992__210__135_0/
[Ag] Lectures on exponential decay of solutions of second order elliptic equations, Math. Notes, t.29, Princeton University Press.
[Bra-Li] , : On extensions of the Brunn-Minkovski and Prekopa-Leindler Theorems, including inequalities for Log concave functions, and with an application to diffusion equation Journal of functional analysis 22 (1976), pp.366-389
[Bru-He] , : Un problème de double puits provenant de la théorie statistico-mécanique des changements de phase (ou relecture d'un cours de M.Kac), Preprint de l'ENS (Mars 1991).
[Di] : Calcul infinitésimal, Hermann ; collection méthodes
[Gl-Ja] , Quantum Physics (second edition), A functional integral point of view. Springer Verlag
[Ha] , On the rate of asymptotic eigenvalue degeneracy Comm. in Math. Phys., t.75, 1980, p.239-261
[He] : Décroissance exponentielle des fonctions propres de l'opérateur de Kac : cas de la dimension . Manuscrit, Mars 1991
[He-Sj] , : [1] Multiple wells in the semi-classical limit I Comm. in PDE, 9(4), 337-408 (1984)
, : [2] Puits multiples en limite semi-classique II Interaction moléculaire. Symétries. Perturbation Ann. Inst. Henri Poincaré Vol. 42, n°2, 1985, p.127-212
, : [3] Multiple wells in the semi-classical limit III Math. Nachrichte 124 (1985) p.263-313
, : [4] Analyse semi-classique pour l'équation de Harper Mémoire de la SMF n°34 ; Tome 116, Fasc.4 (1988)
[Ka] [1] Statistical mechanics of some one-dimensional systems Studies in mathematical analysis and related topics : essays in honor of Georges Polya (Stanford Univ. Press, Stanford, California 1962), p.165-169
[2] Mathematical mechanisms of phase transitions Brandeis lectures (1966), Gordon and Breach, New York
[Ka-Th] , Phase transition and eigenvalue degeneracy of a one dimensional anharmonic oscillator Studies in Applied Mathematics 48 (1969) 257-264
[Ki-Si] , : Comparison theorems for the gap of Schrödinger operators JFA, Vol.75, n°2, Dec.1987, p.396-410
[PPW] , , : On the ratio of consecutive eigenvalues, Journal of Math, and Physics, 35, n°3 (Oct.56), pp.289-298
[Ru] : Statistical mechanics Math. physics monograph series, WA. Benjamin, Inc. 1969
[Si] [1] Instantons, double wells and large deviations Bull. AMS., t.8, 1983 p.323-326
[2] Semi-classical analysis of low lying eigenvalues I Ann. Inst. Poincaré, t.38, 1983, p.295-307
[3] Semi-classical analysis of low lying eigenvalues II tunneling, Ann. of Math. 120, p. 89-118 (1984)
[SWYY] , , , : An estimate of the gap of the first two eigenvalues in the Schrbdinger operator. Ann. d. Scuola Norm. Sup. di Pisa, Série IV Vol. XII, 2, p.319-333
[Sj] : [1] Potential wells in high dimensions I (to appear in Annales de l'IHP, Section Physique Théorique)
: [2] Potential wells in high dimensions II, more about the one well case, (to appear in Annales de l'IHP, Section Physique Théorique)
[Th] Mathematical statistical mechanics, The Macmillan company New York (1972)







