@incollection{AST_1988__157-158__341_0,
author = {Rezakhanlou, Fraydoun and Taylor, S. James},
title = {The packing measure of the graph of a stable process},
booktitle = {Colloque Paul L\'evy sur les processus stochastiques},
series = {Ast\'erisque},
pages = {341--362},
year = {1988},
publisher = {Soci\'et\'e math\'ematique de France},
number = {157-158},
zbl = {0677.60082},
language = {en},
url = {https://www.numdam.org/item/AST_1988__157-158__341_0/}
}
TY - CHAP AU - Rezakhanlou, Fraydoun AU - Taylor, S. James TI - The packing measure of the graph of a stable process BT - Colloque Paul Lévy sur les processus stochastiques AU - Collectif T3 - Astérisque PY - 1988 SP - 341 EP - 362 IS - 157-158 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1988__157-158__341_0/ LA - en ID - AST_1988__157-158__341_0 ER -
%0 Book Section %A Rezakhanlou, Fraydoun %A Taylor, S. James %T The packing measure of the graph of a stable process %B Colloque Paul Lévy sur les processus stochastiques %A Collectif %S Astérisque %D 1988 %P 341-362 %N 157-158 %I Société mathématique de France %U https://www.numdam.org/item/AST_1988__157-158__341_0/ %G en %F AST_1988__157-158__341_0
Rezakhanlou, Fraydoun; Taylor, S. James. The packing measure of the graph of a stable process, dans Colloque Paul Lévy sur les processus stochastiques, Astérisque, no. 157-158 (1988), pp. 341-362. https://www.numdam.org/item/AST_1988__157-158__341_0/
1. . Continuity of local times for Levy processes. Zeitschrift f. Wahrsch. 69 (1985), 23-35. | Zbl | DOI
2. . Necessary and sufficient conditions for the continuity of local time of Lévy processes. To appear. Annals of Probability. | Zbl
3. and . The correct measure function for the graph of a transient stable process. Zeitschrift f. Wahrsch. 9 (1968), 131-138. | Zbl | DOI
4. and . The packing measure of planar Brownian motion. Seminar on Stochastic Processes, Birkhauser (1986), 139-148. | Zbl
5. . La mesure de Hausdorff de la courbe du mouvement brownien. Giovn Ist Ital. Attuari 16 (1953), 1-37. | Zbl
6. and . The potential kernel and hitting probabilities for the general stable process in . Trans. Amer. Math. Soc. 146 (1969), 299-321. | Zbl
7. and . Sample path properties of processes with stable components. Zeitschrift f. Wahrsch. 12 (1969), 267-289. | Zbl | DOI
8. and . Hausdorff measure properties of the asymmetric Cauchy processes. Annals Prob. 5 (1977), 608-615. | Zbl | DOI
9. and . The packing dimension of the sample path of a Lévy process. In preparation.
10. and . Packing regularity of sets in n-space. Preprint. | Zbl | DOI
11. . The packing measure of the graph and level sets of continuous functions. Preprint. | Zbl | DOI
12. . Sample path properties of a transient-stable process. J. Math. Mechanics 16 (1967), 1229-1246. | Zbl
13. . The use of packing measure in the analysis of random sets. Stochastic Processes and their Applications. Springer Lecture Notes 1203 (1985), 214-222. | Zbl
14. . The measure theory of random fractals. Math. Proc. Camb. Phil. Soc. 100 (1986), 383-406. | Zbl | DOI
15. and . Packing measure and its evaluation for a Brownian path. Trans. Amer. Math. Soc. 288 (1985), 679-699. | Zbl | DOI
16. and . The packing measure of rectifiable subsets of the plane. Math. Proc. Camb. Phil. Soc. 99 (1986), 285-296. | Zbl | DOI
17. and . The exact Hausdorff measure of the zero set of a stable process. Zeitschrift f. Wahrsch. 6 (1966), 170-180. | Zbl | DOI







