@incollection{AST_1985__132__103_0,
author = {Yor, M.},
title = {Une d\'ecomposition asymptotique du nombre de tours du mouvement {Brownien} complexe},
booktitle = {Colloque en l'honneur de Laurent Schwartz (Volume 2)},
series = {Ast\'erisque},
pages = {103--126},
year = {1985},
publisher = {Soci\'et\'e math\'ematique de France},
number = {132},
mrnumber = {816763},
zbl = {0583.60077},
language = {fr},
url = {https://www.numdam.org/item/AST_1985__132__103_0/}
}
TY - CHAP AU - Yor, M. TI - Une décomposition asymptotique du nombre de tours du mouvement Brownien complexe BT - Colloque en l'honneur de Laurent Schwartz (Volume 2) AU - Collectif T3 - Astérisque PY - 1985 SP - 103 EP - 126 IS - 132 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1985__132__103_0/ LA - fr ID - AST_1985__132__103_0 ER -
%0 Book Section %A Yor, M. %T Une décomposition asymptotique du nombre de tours du mouvement Brownien complexe %B Colloque en l'honneur de Laurent Schwartz (Volume 2) %A Collectif %S Astérisque %D 1985 %P 103-126 %N 132 %I Société mathématique de France %U https://www.numdam.org/item/AST_1985__132__103_0/ %G fr %F AST_1985__132__103_0
Yor, M. Une décomposition asymptotique du nombre de tours du mouvement Brownien complexe, dans Colloque en l'honneur de Laurent Schwartz (Volume 2), Astérisque, no. 132 (1985), pp. 103-126. https://www.numdam.org/item/AST_1985__132__103_0/
[1] : A new proof of Spitzer's result on the winding of two dimensional Brownian motion. The Annals of Proba., 10, n° 1, 244-246, 1982. | MR | Zbl | DOI
[2] : Statistical mechanics with topological constraints, I. Proc. Phys. Soc, 91, 513-519 (1967). | Zbl | DOI
[3] : Completely monotone families of solutions of n th order linear differential equations and infinitely divisible distributions. Ann. Scuola Norm. Sup. Pisa, IV, vol III (1976), 267-287. | MR | Zbl | EuDML | Numdam
[4] : "Normal" distribution functions on spheres and the modified Bessel functions. Ann. Proba. 2, 1974, 593-607. | MR | Zbl | DOI
[5] : Diffusion processes and their sample paths. Springer Verlag (1965). | Zbl | MR
[6] : On D. Williams'pinching method and some applications. J. London Math Soc. (2), 26, 1982, 348-364. | MR | Zbl | DOI
[7] : Communication personnelle.
[8] : One dimensional Brownian motion and the three dimensional Bessel process. Adv. App. Proba 7 , 511-526, 1975. | MR | Zbl | DOI
[9] : Bessel processes and infinitely divisible laws, in : "Stochastic Integrals", ed : D. Williams. Lect. Notes in Maths. 851. Springer (1981). | MR | Zbl
[10] : Some theorems concerning two-dimensional Brownian motion. Trans. Amer. Math. Soc. 87, 187-197, 1958. | MR | Zbl
[11] : On time inversion of one-dimensional diffusion processes. Z. Wahr. 31, 115-124 (1975). | MR | Zbl | DOI
[12] : Diffusions, Markov processes and Martingales Vol 1. Foundations. J. Wiley (1979). | MR | Zbl
[13] : Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. Ser 3, 28, 738-768 (1974). | MR | Zbl | DOI
[14] : A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion. Unpublished manuscript, University College, Swansea, 1974.
[15] : Loi de l'indice du lacet Brownien, et distribution de Hartman - Watson. Zeitschrift für Wahr., 53, 71-95 (1980). | MR | Zbl | DOI







