@incollection{AST_1984__118__189_0,
author = {Korevaar, N.},
title = {The normal variations technique for studying the shape of capillary surfaces},
booktitle = {Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983},
series = {Ast\'erisque},
pages = {189--195},
year = {1984},
publisher = {Soci\'et\'e math\'ematique de France},
number = {118},
mrnumber = {761748},
zbl = {0609.76017},
language = {en},
url = {https://www.numdam.org/item/AST_1984__118__189_0/}
}
TY - CHAP AU - Korevaar, N. TI - The normal variations technique for studying the shape of capillary surfaces BT - Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983 AU - Collectif T3 - Astérisque PY - 1984 SP - 189 EP - 195 IS - 118 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1984__118__189_0/ LA - en ID - AST_1984__118__189_0 ER -
%0 Book Section %A Korevaar, N. %T The normal variations technique for studying the shape of capillary surfaces %B Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983 %A Collectif %S Astérisque %D 1984 %P 189-195 %N 118 %I Société mathématique de France %U https://www.numdam.org/item/AST_1984__118__189_0/ %G en %F AST_1984__118__189_0
Korevaar, N. The normal variations technique for studying the shape of capillary surfaces, dans Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983, Astérisque, no. 118 (1984), pp. 189-195. https://www.numdam.org/item/AST_1984__118__189_0/
[1] , , Una maggiorazione a priori relativa alle ipersuperfici minimali nonparametriche, Arch. Rat. Mech. Anal. 32 (1969), 255-269. | MR | Zbl | DOI
[2] , New estimates for equations of minimal surface type, Arch. Rat. Mech. Anal. 14 (1963), 337-375. | MR | Zbl | DOI
[3] , Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa 3 (1976), 157-175. | MR | Zbl | EuDML | Numdam
[4] , The normal variations technique for studying the steepness of capillary surfaces, in preparation.
[5] , Gradient estimates for the capillary-type problem via the maximum principle, preliminary version. | Zbl | DOI
[6] , Interior gradient bounds for non-uniformly elliptic equations, Indiana U. Math. J. 25 #9 (1976), 821-855. | MR | Zbl | DOI
[7] and , Existence and regularity of a capillary surface with a prescribed contact angle. Arch. Rat. Mech. Anal. 61 (1976), 19-34. | MR | Zbl | DOI
[8] , On the existence of a capillary surface with a prescribed angle of contact, Comm. Pure Appl. Math. 28 (1975), 189-200. | MR | Zbl | DOI
[9] , A new proof of the interior gradient bound for the minimal surface equation in n-dimensions, Proc. Nat. Acad. Sci. USA 69 (1972), 166-175. | MR | Zbl | DOI
[10] , Solution to the capillary problem, Vestnik Leningrad Univ. 19 (1973), 54-64; (English translation: Vestnik Leningrad Univ. Math. 6 (1979), 363-375). | Zbl






