@incollection{AST_1984__118__13_0,
author = {Almgren, F. J. and Super, B.},
title = {Multiple valued functions in the geometric calculus of variations},
booktitle = {Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983},
series = {Ast\'erisque},
pages = {13--32},
year = {1984},
publisher = {Soci\'et\'e math\'ematique de France},
number = {118},
zbl = {0575.49025},
language = {en},
url = {https://www.numdam.org/item/AST_1984__118__13_0/}
}
TY - CHAP AU - Almgren, F. J. AU - Super, B. TI - Multiple valued functions in the geometric calculus of variations BT - Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983 AU - Collectif T3 - Astérisque PY - 1984 SP - 13 EP - 32 IS - 118 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1984__118__13_0/ LA - en ID - AST_1984__118__13_0 ER -
%0 Book Section %A Almgren, F. J. %A Super, B. %T Multiple valued functions in the geometric calculus of variations %B Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983 %A Collectif %S Astérisque %D 1984 %P 13-32 %N 118 %I Société mathématique de France %U https://www.numdam.org/item/AST_1984__118__13_0/ %G en %F AST_1984__118__13_0
Almgren, F. J.; Super, B. Multiple valued functions in the geometric calculus of variations, dans Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983, Astérisque, no. 118 (1984), pp. 13-32. https://www.numdam.org/item/AST_1984__118__13_0/
[A1] , Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer.. Math. Soc. No. 165 (1976), VIII + 199. | Zbl
[A2] , Approximation of rectifiable currents by Lipschitz Q valued functions, Ann. of Math. Studies (to appear).
[A3] , valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, (preprint). | Zbl
[A4] , Lecture notes on geometric measure theory, (in preparation).
[ATZ] , , and , Equilibrium shapes of crystals in a gravitational field: crystals on a table, J. Statist. Phys. (to appear).
[B] , Regularity theory for almost minimal currents. Arch. Rational Mech. Anal. 78 no. 2 (1982), 99-130. | Zbl | DOI
[F] , Geometric Measure Theory, Springer-Verlag, New York, 1969. | Zbl
[HS] and , Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. 110 (1979), 439-486. | Zbl | DOI
[M] , Lower semicontinuity, existence and regularity theorems for elliptic variational integrals of multiple valued functions. Trans. Amer. Math. Soc. (to appear). | Zbl
[N] , A priori integral geometric estimates for non-positively curved surfaces, Ph.D. thesis, Princeton Univ., 1983.
[S1] , Lipschitz spaces of multiple valued functions and the closure theorem, Ph.D. thesis, Princeton Univ., 1982.
[S2] , A new proof of the closure theorem for integral currents, Indiana J. Math, (to appear). | Zbl
[SU] , Computational algorithms for generating minimal surfaces. Senior thesis, Princeton Univ., 1983.
[T1] , Unique structure of solutions to a class of nonelliptic variational problems, Proc. Symp. P. Math. XXVII (1974), 481-489. | Zbl
,
[T2] , Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568-588. | Zbl | DOI
[w] , Tangent cones to two dimensional area-minimizing integral currents are unique, Duke Math. J. 50 (1983), 143-160. | Zbl







