A reconstruction method for the inverse gravimetric problem
The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 197-225

We propose a reconstruction method to solve the inverse gravimetric problem with constant mass density. The method is based on the computation of the harmonic moments of the unknown domain. Convergence results are proved and numerical experiments are provided to illustrate the method and show its efficiency.

Publié le :
DOI : 10.5802/smai-jcm.99
Classification : 31A25, 86A22, 35R30
Keywords: inverse gravimetric problem, shape from moments problem, Prony’s system, quadrature domains, partial balayage of measure

Gerber-Roth, Anthony 1 ; Munnier, Alexandre 1 ; Ramdani, Karim 1

1 Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
@article{SMAI-JCM_2023__9__197_0,
     author = {Gerber-Roth, Anthony and Munnier, Alexandre and Ramdani, Karim},
     title = {A reconstruction method for the inverse gravimetric problem},
     journal = {The SMAI Journal of computational mathematics},
     pages = {197--225},
     year = {2023},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     doi = {10.5802/smai-jcm.99},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/smai-jcm.99/}
}
TY  - JOUR
AU  - Gerber-Roth, Anthony
AU  - Munnier, Alexandre
AU  - Ramdani, Karim
TI  - A reconstruction method for the inverse gravimetric problem
JO  - The SMAI Journal of computational mathematics
PY  - 2023
SP  - 197
EP  - 225
VL  - 9
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://www.numdam.org/articles/10.5802/smai-jcm.99/
DO  - 10.5802/smai-jcm.99
LA  - en
ID  - SMAI-JCM_2023__9__197_0
ER  - 
%0 Journal Article
%A Gerber-Roth, Anthony
%A Munnier, Alexandre
%A Ramdani, Karim
%T A reconstruction method for the inverse gravimetric problem
%J The SMAI Journal of computational mathematics
%D 2023
%P 197-225
%V 9
%I Société de Mathématiques Appliquées et Industrielles
%U https://www.numdam.org/articles/10.5802/smai-jcm.99/
%R 10.5802/smai-jcm.99
%G en
%F SMAI-JCM_2023__9__197_0
Gerber-Roth, Anthony; Munnier, Alexandre; Ramdani, Karim. A reconstruction method for the inverse gravimetric problem. The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 197-225. doi: 10.5802/smai-jcm.99

[1] Ameur, Yacin; Helmer, Martin; Tellander, Felix On the uniqueness problem for quadrature domains, Comput. Methods Funct. Theory, Volume 21 (2021) no. 3, pp. 473-504 | DOI | MR | Zbl

[2] Atkinson, Kendall; Han, Weimin Theoretical numerical analysis. A functional analysis framework, Texts in Applied Mathematics, 39, Springer, 2005, xviii+576 pages | DOI | MR

[3] Batenkov, Dmitry; Yomdin, Yosef On the accuracy of solving confluent Prony systems, SIAM J. Appl. Math., Volume 73 (2013) no. 1, pp. 134-154 | DOI | Zbl | MR

[4] Bell, Steven R. Density of quadrature domains in one and several complex variables, Complex Var. Elliptic Equ., Volume 54 (2009) no. 3-4, pp. 165-171 | DOI | Zbl | MR

[5] Canelas, Alfredo; Laurain, Antoine; Novotny, Antonio A. A new reconstruction method for the inverse potential problem, J. Comput. Phys., Volume 268 (2014), pp. 417-431 | DOI | Zbl | MR

[6] Cherednichenko, Victor G. Inverse logarithmic potential problem, Inverse and Ill-Posed Problems Series, Walter de Gruyter, 1996 | DOI | MR

[7] El Badia, Abdellatif; Ha-Duong, Tuong An inverse source problem in potential analysis, Inverse Probl., Volume 16 (2000) no. 3, pp. 651-663 | DOI | Zbl | MR

[8] Friedman, Avner Variational principles and free-boundary problems (Pure and Applied Mathematics), 1982, p. ix+710 | Zbl

[9] Gardiner, Stephen J.; Sjödin, Tomas Convexity and the exterior inverse problem of potential theory, Proc. Am. Math. Soc., Volume 136 (2008) no. 5, pp. 1699-1703 | DOI | MR | Zbl

[10] Gardiner, Stephen J.; Sjödin, Tomas Partial balayage and the exterior inverse problem of potential theory, Potential theory and stochastics in Albac. Aurel Cornea memorial volume. Conference proceedings, Albac, Romania, September 4–8, 2007 (Theta Series in Advanced Mathematics), Volume 11, The Theta Foundation, 2008, pp. 111-123 | Zbl

[11] Golub, Gene H.; Milanfar, Peyman; Varah, James A stable numerical method for inverting shape from moments, SIAM J. Sci. Comput., Volume 21 (1999) no. 4, pp. 1222-1243 | DOI | MR | Zbl

[12] Gustafsson, Björn On quadrature domains and an inverse problem in potential theory, J. Anal. Math., Volume 55 (1990), pp. 172-216 | DOI | Zbl | MR

[13] Gustafsson, Björn; He, Chiyu; Milanfar, Peyman; Putinar, Mihai Reconstructing planar domains from their moments, Inverse Probl., Volume 16 (2000) no. 4, pp. 1053-1070 | DOI | MR | Zbl

[14] Gustafsson, Björn; Sakai, Makoto Properties of some balayage operators, with applications to quadrature domains and moving boundary problems, Nonlinear Anal., Theory Methods Appl., Volume 22 (1994) no. 10, pp. 1221-1245 | DOI | Zbl | MR

[15] Gustafsson, Björn; Shahgholian, Henrik Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine Angew. Math., Volume 473 (1996), pp. 137-179 | Zbl | MR

[16] Gustafsson, Björn; Shapiro, Harold S. What is a quadrature domain?, Quadrature domains and their applications (Operator Theory: Advances and Applications), Volume 156, Birkhäuser, 2005, pp. 1-25 | DOI | MR | Zbl

[17] Hecht, Freidrich New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 https://freefem.org/ | MR | Zbl

[18] Hettlich, Frank; Rundell, William Iterative methods for the reconstruction of an inverse potential problem, Inverse Probl., Volume 12 (1996) no. 3, pp. 251-266 | DOI | Zbl | MR

[19] Hokanson, Jeffrey Numerically Stable and Statistically Efficient and Algorithms for Large and Scale Exponential and Fitting, Ph. D. Thesis, Rice University (2013) (https://hdl.handle.net/1911/77161) | MR

[20] Isakov, Victor Inverse source problems, Mathematical Surveys and Monographs, 34, American Mathematical Society, 1990, xiv+193 pages | Zbl | DOI

[21] Isakov, Victor; Leung, Shingyu; Qian, Jianliang A fast local level set method for inverse gravimetry, Commun. Comput. Phys., Volume 10 (2011) no. 4, pp. 1044-1070 | MR | DOI | Zbl

[22] Isakov, Victor; Leung, Shingyu; Qian, Jianliang A three-dimensional inverse gravimetry problem for ice with snow caps, Inverse Probl. Imaging, Volume 7 (2013) no. 2, pp. 523-544 | DOI | Zbl | MR

[23] Ito, Kazufumi; Kunisch, Karl Semi–Smooth Newton Methods for Variational Inequalities of the First Kind, ESAIM, Math. Model. Numer. Anal., Volume 37 (2003) no. 1, p. 41–62 | DOI | MR | Numdam | Zbl

[24] Kress, Rainer Linear integral equations, Applied Mathematical Sciences, 82, Springer, 2014, xvi+412 pages | DOI | MR

[25] Kress, Rainer; Rundell, William A nonlinear integral equation and an iterative algorithm for an inverse source problem, J. Integral Equations Appl., Volume 27 (2015) no. 2, pp. 179-197 | DOI | MR | Zbl

[26] Li, Wenbin; Lu, Wangtao; Qian, Jianliang A level-set method for imaging salt structures using gravity data, Geophysics, Volume 81 (2016) no. 2, p. G27-G40 | DOI

[27] Li, Wenbin; Qian, Jianliang Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods, Inverse Probl. Imaging, Volume 15 (2021) no. 3, pp. 387-413 | DOI | MR | Zbl

[28] Lu, Wangtao; Leung, Shingyu; Qian, Jianliang An improved fast local level set method for three-dimensional inverse gravimetry, Inverse Probl. Imaging, Volume 9 (2015) no. 2, pp. 479-509 | DOI | Zbl | MR

[29] McLean, William Strongly elliptic systems and boundary integral equations, Cambridge University Press, 2000, xiv+357 pages | MR

[30] Milanfar, P.; Verghese, G. C.; Karl, W. C.; Willsky, A. S. Reconstructing polygons from moments with connections to array processing, IEEE Trans. Signal Process., Volume 43 (1995) no. 2, pp. 432-443 | DOI

[31] Pisarenko, V. F. The Retrieval of Harmonics from a Covariance Function, Geophys. J. Int., Volume 33 (1973) no. 3, pp. 347-366 | DOI | Zbl

[32] Potthast, Roland A survey on sampling and probe methods for inverse problems, Inverse Probl., Volume 22 (2006) no. 2, p. R1-R47 | DOI | MR | Zbl

[33] Roberty, Nilson C.; Alves, Carlos J. S. On the identification of star-shape sources from boundary measurements using a reciprocity functional, Inverse Probl. Sci. Eng., Volume 17 (2009) no. 2, pp. 187-202 | DOI | Zbl | MR

[34] Sakai, Makoto Quadrature domains, Lecture Notes in Mathematics, 934, Springer, 1982 | Zbl | DOI

[35] Sakurai, Tetsuya; Asakura, Junko; Tadano, Hiroto; Ikegami, Tsutomu Error analysis for a matrix pencil of Hankel matrices with perturbed complex moments, JSIAM Lett., Volume 1 (2009), pp. 76-79 | DOI | Zbl | MR

[36] Shapiro, Harold S. The Schwarz function and its generalization to higher dimensions, John Wiley & Sons, 1992 | Zbl

[37] Steinbach, Olaf Numerical approximation methods for elliptic boundary value problems, Springer, 2008 | DOI

[38] Stoica, Petre; Moses, Randolph L. Spectral Analysis of Signals, Pearson Prentice Hall, 2005

[39] Stray, Ben; Lamb, Andrew; Kaushik, Aisha; Vovrosh, Jamie; Rodgers, Anthony; Winch, Jonathan; Hayati, Farzad; Boddice, Daniel; Stabrawa, Artur; Niggebaum, Alexander; Langlois, Mehdi; Lien, Yu-Hung; Lellouch, Samuel; Roshanmanesh, Sanaz; Ridley, Kevin; de Villiers, Geoffrey; Brown, Gareth; Cross, Trevor; Tuckwell, George; Faramarzi, Asaad; Metje, Nicole; Bongs, Kai; Holynski, Michael Quantum sensing for gravity cartography, Nature, Volume 602 (2022) no. 7898, pp. 590-594 | DOI

[40] Doel, K.; Ascher, Uri M.; Leitão, Antonio Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems, J. Sci. Comput., Volume 43 (2010) no. 1, pp. 44-66 | DOI | Zbl | MR

[41] Zidarov, Dimiter Inverse gravimetric problem in geoprospecting and geodesy. Transl. from the Bulgarian, Elsevier, 1990, 284 pages | Zbl

Cité par Sources :