Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics
The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 151-195

The metric tensor of a Riemannian manifold can be approximated using Regge finite elements and such approximations can be used to compute approximations to the Gauss curvature and the Levi-Civita connection of the manifold. It is shown that certain Regge approximations yield curvature and connection approximations that converge at a higher rate than previously known. The analysis is based on covariant (distributional) curl and incompatibility operators which can be applied to piecewise smooth matrix fields whose tangential-tangential component is continuous across element interfaces. Using the properties of the canonical interpolant of the Regge space, we obtain superconvergence of approximations of these covariant operators. Numerical experiments further illustrate the results from the error analysis.

Publié le :
DOI : 10.5802/smai-jcm.98
Classification : 65N30, 53A70, 83C27
Keywords: Gauss curvature, Regge calculus, finite element method, differential geometry

Gopalakrishnan, Jay 1 ; Neunteufel, Michael 2 ; Schöberl, Joachim 2 ; Wardetzky, Max 3

1 Portland State University, PO Box 751, Portland OR 97207, USA
2 Institute for Analysis and Scientific Computing, TU Wien, Wiedner Hauptstr. 8-10, 1040 Wien, Austria
3 Institute of Numerical and Applied Mathematics, University of Göttingen, Lotzestr. 16-18, 37083 Göttingen, Germany
@article{SMAI-JCM_2023__9__151_0,
     author = {Gopalakrishnan, Jay and Neunteufel, Michael and Sch\"oberl, Joachim and Wardetzky, Max},
     title = {Analysis of curvature approximations via covariant curl and incompatibility for {Regge} metrics},
     journal = {The SMAI Journal of computational mathematics},
     pages = {151--195},
     year = {2023},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     doi = {10.5802/smai-jcm.98},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/smai-jcm.98/}
}
TY  - JOUR
AU  - Gopalakrishnan, Jay
AU  - Neunteufel, Michael
AU  - Schöberl, Joachim
AU  - Wardetzky, Max
TI  - Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics
JO  - The SMAI Journal of computational mathematics
PY  - 2023
SP  - 151
EP  - 195
VL  - 9
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://www.numdam.org/articles/10.5802/smai-jcm.98/
DO  - 10.5802/smai-jcm.98
LA  - en
ID  - SMAI-JCM_2023__9__151_0
ER  - 
%0 Journal Article
%A Gopalakrishnan, Jay
%A Neunteufel, Michael
%A Schöberl, Joachim
%A Wardetzky, Max
%T Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics
%J The SMAI Journal of computational mathematics
%D 2023
%P 151-195
%V 9
%I Société de Mathématiques Appliquées et Industrielles
%U https://www.numdam.org/articles/10.5802/smai-jcm.98/
%R 10.5802/smai-jcm.98
%G en
%F SMAI-JCM_2023__9__151_0
Gopalakrishnan, Jay; Neunteufel, Michael; Schöberl, Joachim; Wardetzky, Max. Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics. The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 151-195. doi: 10.5802/smai-jcm.98

[1] Amstutz, Samuel; Van Goethem, Nicolas Analysis of the Incompatibility Operator and Application in Intrinsic Elasticity with Dislocations, SIAM J. Math. Anal., Volume 48 (2016) no. 1, pp. 320-348 | DOI | MR | Zbl

[2] Amstutz, Samuel; Van Goethem, Nicolas Existence and asymptotic results for an intrinsic model of small-strain incompatible elasticity, Discrete Contin. Dyn. Syst., Ser. B, Volume 25 (2020) no. 10, pp. 3769-3805 | Zbl | MR

[3] Arnold, Douglas N. Finite element exterior calculus, Society for Industrial and Applied Mathematics, 2018

[4] Arnold, Douglas N.; Awanou, Gerard; Winther, Ragnar Finite elements for symmetric tensors in three dimensions, Math. Comput., Volume 77 (2008) no. 263, pp. 1229-1251 | DOI | MR | Zbl

[5] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155 | DOI | MR | Zbl

[6] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Am. Math. Soc., Volume 47 (2010) no. 2, pp. 281-354 | DOI | MR | Zbl

[7] Arnold, Douglas N.; Hu, Kaibo Complexes from Complexes, Found. Comput. Math., Volume 21 (2021) no. 6, pp. 1739-1774 | DOI | MR | Zbl

[8] Arnold, Douglas N.; Walker, Shawn W. The Hellan–Herrmann–Johnson Method with Curved Elements, SIAM J. Numer. Anal., Volume 58 (2020) no. 5, pp. 2829-2855 | DOI | MR | Zbl

[9] Barrett, John W.; Oriti, Daniele; Williams, Ruth M. Tullio Regge’s legacy: Regge calculus and discrete gravity (2018) | arXiv

[10] Berchenko-Kogan, Yakov; Gawlik, Evan S. Finite element approximation of the Levi-Civita connection and its curvature in two dimensions, Found. Comput. Math. (2022) | DOI

[11] Boffi, Daniele; Brezzi, Franco; Fortin, Michel Mixed finite element methods and applications, 44, Springer, 2013 | DOI

[12] Borrelli, Vincent; Cazals, Frederic; Morvan, Jean-Marie On the angular defect of triangulations and the pointwise approximation of curvatures, Comput. Aided Geom. Des., Volume 20 (2003) no. 6, pp. 319-341 | DOI | MR | Zbl

[13] Brezzi, Franco; Douglas, Jim; Marini, Luisa D. Two families of mixed finite elements for second order elliptic problems, Numer. Math., Volume 47 (1985) no. 2, pp. 217-235 | Zbl | DOI | MR

[14] Carmo, Manfredo P. do Riemannian Geometry, Birkhäuser, 1992 | DOI

[15] Cheeger, Jeff; Müller, Werner; Schrader, Robert On the curvature of piecewise flat spaces, Commun. Math. Phys., Volume 92 (1984) no. 3, pp. 405-454 | DOI | MR | Zbl

[16] Christiansen, Snorre H. A characterization of second-order differential operators on finite element spaces, Math. Models Methods Appl. Sci., Volume 14 (2004) no. 12, pp. 1881-1892 | DOI | MR | Zbl

[17] Christiansen, Snorre H. On the linearization of Regge calculus, Numer. Math., Volume 119 (2011) no. 4, pp. 613-640 | MR | DOI | Zbl

[18] Christiansen, Snorre H. Exact formulas for the approximation of connections and curvature (2015) | arXiv

[19] Christiansen, Snorre H.; Gopalakrishnan, Jay; Guzmán, Johnny; Hu, Kaibo A discrete elasticity complex on three-dimensional Alfeld splits (2020) | arXiv

[20] Clarke, C. J. S.; Dray, Tevian Junction conditions for null hypersurfaces, Class. Quant. Grav., Volume 4 (1987) no. 2, pp. 265-275 | DOI | MR | Zbl

[21] Comodi, Maria I. The Hellan–Herrmann–Johnson Method: Some New Error Estimates and Postprocessing, Math. Comput., Volume 52 (1989) no. 185, pp. 17-29 | DOI | MR | Zbl

[22] Crouzeix, Michel; Thomée, Vidar The Stability in L p and W p 1 of the L 2 -projection onto Finite Element Function Spaces, Math. Comput., Volume 48 (1987) no. 178, pp. 521-532

[23] Fischer, Arthur E.; Marsden, Jerrold E. Deformations of the scalar curvature, Duke Math. J. (1975) | MR | Zbl

[24] Fritz, Hans Isoparametric finite element approximation of Ricci curvature, IMA J. Numer. Anal., Volume 33 (2013) no. 4, pp. 1265-1290 | MR | Zbl | DOI

[25] Fritz, Hans Numerical Ricci–DeTurck flow, Numer. Math., Volume 131 (2015) no. 2, pp. 241-271 | MR | Zbl | DOI

[26] Gawlik, Evan S. Finite Element Methods for Geometric Evolution Equations, Geometric Science of Information (Nielsen, Frank; Barbaresco, Frédéric, eds.), Springer (2019), pp. 532-540 | DOI | MR | Zbl

[27] Gawlik, Evan S. High-Order Approximation of Gaussian Curvature with Regge Finite Elements, SIAM J. Numer. Anal., Volume 58 (2020) no. 3, pp. 1801-1821 | DOI | MR | Zbl

[28] Hauret, Patrice; Hecht, Frédéric A Discrete Differential Sequence for Elasticity Based upon Continuous Displacements, SIAM J. Sci. Comput., Volume 35 (2013) no. 1, p. B291-B314 | MR | Zbl | DOI

[29] Israel, W. Singular hypersurfaces and thin shells in general relativity, Il Nuovo Cimento B Series, Volume 44 (1966) no. 1, pp. 1-14 | DOI

[30] Kosovskiĭ, Nikolaĭ N. Gluing of Riemannian manifolds of curvature κ, Algebra Anal., Volume 14 (2002) no. 3, pp. 140-157 | MR

[31] Kosovskiĭ, Nikolaĭ N. Gluing with branching of Riemannian manifolds of curvature κ, Algebra Anal., Volume 16 (2004) no. 4, pp. 132-145 | MR

[32] Lee, John M. Riemannian manifolds: an introduction to curvature, Springer, 1997 | DOI

[33] Lee, John M. Introduction to Smooth Manifolds, Springer, 2012

[34] Li, Lizao Regge Finite Elements with Applications in Solid Mechanics and Relativity, Ph. D. Thesis, University of Minnesota (2018) http://hdl.handle.net/11299/199048

[35] Liu, Dan; Xu, Guoliang Angle deficit approximation of Gaussian curvature and its convergence over quadrilateral meshes, Comput.-Aided Des., Volume 39 (2007) no. 6, pp. 506-517 https://www.sciencedirect.com/... | DOI

[36] Neunteufel, Michael Mixed Finite Element Methods for Nonlinear Continuum Mechanics and Shells, Ph. D. Thesis, TU Wien (2021) | DOI

[37] Neunteufel, Michael; Schöberl, Joachim Avoiding Membrane Locking with Regge Interpolation, Comput. Methods Appl. Mech. Eng., Volume 373 (2021), 113524 | DOI | MR | Zbl

[38] Petersen, Peter Riemannian Geometry, Springer, 2016 | DOI

[39] Raviart, Pierre-Arnaud; Thomas, Jean-Marie A mixed finite element method for 2-nd order elliptic problems, Mathematical Aspects of Finite Element Methods, Volume 66, Springer, 1977, pp. 292-315 | DOI

[40] Regge, Tullio General relativity without coordinates, Il Nuovo Cimento (1955-1965), Volume 19 (1961) no. 3, pp. 558-571 | DOI | MR

[41] Regge, Tullio; Williams, Ruth M. Discrete structures in gravity, J. Math. Phys., Volume 41 (2000) no. 6, pp. 3964-3984 | DOI | MR | Zbl

[42] Schöberl, Joachim NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., Volume 1 (1997) no. 1, pp. 41-52 | Zbl | DOI

[43] Schöberl, Joachim C++ 11 implementation of finite elements in NGSolve, 2014 https://www.asc.tuwien.ac.at/... (Institute for Analysis and Scientific Computing, Vienna University of Technology)

[44] Sorkin, Rafael Time-evolution problem in Regge calculus, Phys. Rev. D, Volume 12 (1975), pp. 385-396 | MR | DOI

[45] Strichartz, Robert S. Defining Curvature as a Measure via Gauss–Bonnet on Certain Singular Surfaces, J. Geom. Anal., Volume 30 (2020) no. 1, pp. 153-160 | MR | Zbl | DOI

[46] Sullivan, John M. Curvatures of Smooth and Discrete Surfaces, Birkhäuser (2008), pp. 175-188 | MR | DOI

[47] Tu, Loring W. Differential Geometry: Connections, Curvature, Characteristic Classes, Springer, 2017

[48] Walker, Shawn W. The Kirchhoff plate equation on surfaces: the surface Hellan–Herrmann–Johnson method, IMA J. Numer. Anal., Volume 42 (2022), pp. 3094-3134 | MR | Zbl | DOI

[49] Wardetzky, Max Discrete differential operators on polyhedral surfaces—convergence and approximation, Ph. D. Thesis, Freie Universität Berlin (2006)

[50] Whitney, Hassler Geometric integration theory, Princeton University Press, 1957 | DOI

[51] Williams, Ruth M.; Tuckey, Philip A. Regge calculus: a brief review and bibliography, Class. Quant. Grav., Volume 9 (1992) no. 5, pp. 1409-1422 | MR | Zbl | DOI

[52] Xu, Guoliang Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces, Comput. Aided Geom. Des., Volume 23 (2006) no. 2, pp. 193-207 https://www.sciencedirect.com/... | DOI | MR | Zbl

[53] Xu, Zhiqiang; Xu, Guoliang Discrete schemes for Gaussian curvature and their convergence, Comput. Math. Appl., Volume 57 (2009) no. 7, pp. 1187-1195 | DOI | MR | Zbl

Cité par Sources :