Improving Weak PINNs for Hyperbolic Conservation Laws: Dual Norm Computation, Boundary Conditions and Systems
The SMAI Journal of computational mathematics, Tome 10 (2024), pp. 373-401

We consider the approximation of entropy solutions of nonlinear hyperbolic conservation laws using neural networks. We provide explicit computations that highlight why classical PINNs will not work for discontinuous solutions to nonlinear hyperbolic conservation laws and show that weak (dual) norms of the PDE residual should be used in the loss functional. This approach has been termed “weak PINNs” recently. We suggest some modifications to weak PINNs that make their training easier, which leads to smaller errors with less training, as shown by numerical experiments. Additionally, we extend wPINNs to scalar conservation laws with weak boundary data and to systems of hyperbolic conservation laws. We perform numerical experiments in order to assess the accuracy and efficiency of the extended method.

Publié le :
DOI : 10.5802/smai-jcm.116
Classification : 35L65, 65M99
Keywords: physics-informed learning, PINNs, hyperbolic conservation laws, entropy solution

Chaumet, Aidan  1   ; Giesselmann, Jan  1

1 Department of Mathematics, Technical University of Darmstadt, Germany
@article{SMAI-JCM_2024__10__373_0,
     author = {Chaumet, Aidan and Giesselmann, Jan},
     title = {Improving {Weak} {PINNs} for {Hyperbolic} {Conservation} {Laws:} {Dual} {Norm} {Computation,} {Boundary} {Conditions} and {Systems}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {373--401},
     year = {2024},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {10},
     doi = {10.5802/smai-jcm.116},
     zbl = {07963395},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/smai-jcm.116/}
}
TY  - JOUR
AU  - Chaumet, Aidan
AU  - Giesselmann, Jan
TI  - Improving Weak PINNs for Hyperbolic Conservation Laws: Dual Norm Computation, Boundary Conditions and Systems
JO  - The SMAI Journal of computational mathematics
PY  - 2024
SP  - 373
EP  - 401
VL  - 10
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://www.numdam.org/articles/10.5802/smai-jcm.116/
DO  - 10.5802/smai-jcm.116
LA  - en
ID  - SMAI-JCM_2024__10__373_0
ER  - 
%0 Journal Article
%A Chaumet, Aidan
%A Giesselmann, Jan
%T Improving Weak PINNs for Hyperbolic Conservation Laws: Dual Norm Computation, Boundary Conditions and Systems
%J The SMAI Journal of computational mathematics
%D 2024
%P 373-401
%V 10
%I Société de Mathématiques Appliquées et Industrielles
%U https://www.numdam.org/articles/10.5802/smai-jcm.116/
%R 10.5802/smai-jcm.116
%G en
%F SMAI-JCM_2024__10__373_0
Chaumet, Aidan; Giesselmann, Jan. Improving Weak PINNs for Hyperbolic Conservation Laws: Dual Norm Computation, Boundary Conditions and Systems. The SMAI Journal of computational mathematics, Tome 10 (2024), pp. 373-401. doi: 10.5802/smai-jcm.116

[1] Bardos, Claude; Leroux, Alain-Yves; Nedelec, Jean-Claude First order quasilinear equations with boundary conditions, Commun. Partial Differ. Equations, Volume 4 (1979) no. 9, pp. 1017-1034 | MR | Zbl | DOI

[2] Bochev, Pavel B.; Gunzburger, Max D. Least-Squares Finite Element Methods, Applied Mathematical Sciences, Springer, 2009 https://books.google.de/books?id=5ze_xil-fnqc | MR

[3] Dafermos, Constantine M. Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, 325, Springer, 2016, xxxviii+826 pages | DOI | MR

[4] De Lellis, Camillo; Otto, Felix; Westdickenberg, Michael Minimal entropy conditions for Burgers equation, Q. Appl. Math., Volume 62 (2004) no. 4, pp. 687-700 | MR | DOI | Zbl

[5] De Ryck, Tim; Lanthaler, Samuel; Mishra, Siddhartha On the approximation of functions by tanh neural networks, Neural Netw., Volume 143 (2021), pp. 732-750 | DOI | Zbl

[6] De Ryck, Tim; Mishra, Siddhartha Generic bounds on the approximation error for physics-informed (and) operator learning, Advances in Neural Information Processing Systems 35 (NeurIPS 2022), Curran Associates, Inc. (2022), pp. 10945-10958 https://proceedings.neurips.cc/...

[7] De Ryck, Tim; Mishra, Siddhartha; Molinaro, Roberto wPINNs: Weak Physics Informed Neural Networks for Approximating Entropy Solutions of Hyperbolic Conservation Laws, SIAM J. Numer. Anal., Volume 62 (2024) no. 2, pp. 811-841 | MR | Zbl | DOI

[8] Diab, Waleed; Kobaisi, Mohammed Al PINNs for the Solution of the Hyperbolic Buckley-Leverett Problem with a Non-convex Flux Function (2021) | arXiv

[9] Dinca, George; Jebelean, Petru; Mawhin, Jean L. Variational and topological methods for Dirichlet problems with p-Laplacian, Port. Math. (N.S.), Volume 58 (2001) no. 3, pp. 339-378 | MR

[10] Dissanayake, Gamini; Phan-Thien, Nhan Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng., Volume 10 (1994) no. 3, pp. 195-201 | Zbl | DOI

[11] E, Weinan; Yu, Bing The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems, Commun. Math. Stat., Volume 6 (2018) no. 1, pp. 1-12 | MR | Zbl | DOI

[12] Ferrer-Sánchez, Antonio; Martín-Guerrero, José D.; de Austri-Bazan, Roberto Ruiz; Torres-Forné, Alejandro; Font, José A. Gradient-annihilated PINNs for solving Riemann problems: Application to relativistic hydrodynamics, Comput. Methods Appl. Mech. Eng., Volume 424 (2024), 116906 | MR | Zbl | DOI

[13] Fjordholm, Ulrik S.; Lanthaler, Samuel; Mishra, Siddhartha Statistical Solutions of Hyperbolic Conservation Laws: Foundations, Arch. Ration. Mech. Anal., Volume 226 (2017) no. 2, pp. 809-849 | MR | DOI | Zbl

[14] Fraces, Cedric G.; Tchelepi, Hamdi Physics Informed Deep Learning for Flow and Transport in Porous Media, SPE Reservoir Simulation Conference (2021) | DOI

[15] Gemp, Ian; McWilliams, Brian The unreasonable effectiveness of adam on cycles, 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada (2019) https://sgo-workshop.github.io/...

[16] Guermond, Jean-Luc A Finite Element Technique for Solving First-Order PDEs in L p , SIAM J. Numer. Anal., Volume 42 (2004) no. 2, pp. 714-737 | MR | Zbl | DOI

[17] Guermond, Jean-Luc; Marpeau, Fabien; Popov, Bojan A fast algorithm for solving first-order PDEs by L 1 -minimization, Commun. Math. Sci., Volume 6 (2008) no. 1, pp. 199-216 | Zbl | DOI | MR

[18] Guermond, Jean-Luc; Popov, Bojan L 1 -minimization methods for Hamilton–Jacobi equations: the one-dimensional case, Numer. Math., Volume 109 (2008) no. 2, pp. 269-284 | MR | Zbl | DOI

[19] Hu, Zheyuan; Jagtap, Ameya D.; Karniadakis, George Em; Kawaguchi, Kenji When Do Extended Physics-Informed Neural Networks (XPINNs) Improve Generalization?, SIAM J. Sci. Comput., Volume 44 (2022) no. 5, p. A3158-A3182 | MR | Zbl | DOI

[20] Jingrun, Chen A Comparison Study of Deep Galerkin Method and Deep Ritz Method for Elliptic Problems with Different Boundary Conditions, Commun. Math. Res., Volume 36 (2020) no. 3, pp. 354-376 | MR | Zbl | DOI

[21] Ketcheson, David I.; Mandli, Kyle T.; Ahmadia, Aron J.; Alghamdi, Amal; Quezada de Luna, Manuel; Parsani, Matteo; Knepley, Matthew G.; Emmett, Matthew PyClaw: Accessible, Extensible, Scalable Tools for Wave Propagation Problems, SIAM J. Sci. Comput., Volume 34 (2012) no. 4, p. C210-C231 | MR | DOI | Zbl

[22] Kharazmi, Ehsan; Zhang, Zhongqiang; Karniadakis, George Em Variational Physics-Informed Neural Networks For Solving Partial Differential Equations (2019) | arXiv

[23] Kingma, Diederik P.; Ba, Jimmy Adam: A Method for Stochastic Optimization, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Bengio, Yoshua; LeCun, Yann, eds.) (2015) | arXiv

[24] Kondo, Cezar I.; LeFloch, Philippe G. Measure-valued solutions and well-posedness of multi-dimensional conservation laws in a bounded domain, Port. Math. (N.S.), Volume 58 (2001) no. 2, pp. 171-193 | Zbl | MR

[25] Lagaris, Isaac E.; Likas, Aristidis; Fotiadis, Dimitrios I. Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., Volume 9 (1998) no. 5, pp. 987-1000 | DOI

[26] Lagaris, Isaac E.; Likas, Aristidis; Papageorgiou, D. G. Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Netw., Volume 11 (2000) no. 5, pp. 1041-1049 | DOI

[27] Lavery, John E. Nonoscillatory solution of the steady-state inviscid burgers’ equation by mathematical programming, J. Comput. Phys., Volume 79 (1988) no. 2, pp. 436-448 | MR | Zbl | DOI

[28] Liao, Yulei; Ming, Pingbing Deep Nitsche Method: Deep Ritz Method with Essential Boundary Conditions, Commun. Comput. Phys., Volume 29 (2021) no. 5, pp. 1365-1384 | MR | Zbl | DOI

[29] Liu, Li; Liu, Shengping; Xie, Hui; Xiong, Fansheng; Yu, Tengchao; Xiao, Mengjuan; Liu, Lufeng; Yong, Heng Discontinuity Computing with Physics-Informed Neural Network, J. Sci. Comput., Volume 98 (2024) no. 1, 22 | MR | Zbl | DOI

[30] Lorin, Emmanuel; Novruzi, Arian Non-diffusive neural network method for hyperbolic conservation laws, J. Comput. Phys., Volume 513 (2024), 113161 | MR | Zbl | DOI

[31] Lye, Kjetil O.; Mishra, Siddhartha; Ray, Deep Deep learning observables in computational fluid dynamics, J. Comput. Phys., Volume 410 (2020), 109339 | MR | Zbl | DOI

[32] Minakowski, Piotr; Richter, Thomas A priori and a posteriori error estimates for the Deep Ritz method applied to the Laplace and Stokes problem, J. Comput. Appl. Math., Volume 421 (2023), 114845 | Zbl | DOI

[33] Mishra, Siddhartha; Molinaro, Roberto Estimates on the generalization error of physics-informed neural networks for approximating PDEs, IMA J. Numer. Anal., Volume 43 (2022) no. 1, pp. 1-43 | MR | DOI

[34] Pang, Guofei; Lu, Lu; Karniadakis, George Em fPINNs: Fractional Physics-Informed Neural Networks, SIAM J. Sci. Comput., Volume 41 (2019) no. 4, p. A2603-A2626 | MR | Zbl | DOI

[35] Panov, Evgueni Yu. Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy, Math. Notes, Volume 55 (1994) no. 5, pp. 517-525 | DOI | Zbl

[36] Patel, Ravi G.; Manickam, Indu; Trask, Nathaniel A.; Wood, Mitchell A.; Lee, Myoungkyu; Tomas, Ignacio; Cyr, Eric C. Thermodynamically consistent physics-informed neural networks for hyperbolic systems, J. Comput. Phys., Volume 449 (2022), 110754 | MR | Zbl | DOI

[37] Raissi, Maziar; Perdikaris, Paris; Karniadakis, George Em Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., Volume 378 (2019), pp. 686-707 | MR | DOI

[38] Reddi, Sashank J.; Kale, Satyen; Kumar, Sanjiv On the Convergence of Adam and Beyond, 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings (2018) https://openreview.net/forum?id=ryqu7f-rz

[39] Shin, Yeonjong; Zhang, Zhongqiang; Karniadakis, George Em Error Estimates of Residual Minimization using Neural Networks for Linear PDEs, J. Mach. Learn. Model. Comput., Volume 4 (2023) no. 4, pp. 73-101 | DOI

[40] Sirignano, Justin; Spiliopoulos, Konstantinos DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., Volume 375 (2018), pp. 1339-1364 | MR | Zbl | DOI

[41] Smith, Leslie N. Cyclical Learning Rates for Training Neural Networks, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (2017), pp. 464-472 | DOI

[42] Sod, Gary A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., Volume 27 (1978) no. 1, pp. 1-31 | MR | Zbl | DOI

[43] Strelow, Erik Laurin; Gerisch, Alf; Lang, Jens; Pfetsch, Marc E. Physics informed neural networks: A case study for gas transport problems, J. Comput. Phys., Volume 481 (2023), 112041 | MR | DOI | Zbl

[44] Svärd, Magnus Entropy solutions of the compressible Euler equations, BIT Numer. Math., Volume 56 (2016) no. 4, pp. 1479-1496 | MR | Zbl | DOI

[45] Wang, Chuwei; Li, Shanda; He, Di; Wang, Liwei Is L 2 Physics Informed Loss Always Suitable for Training Physics Informed Neural Network?, Adv. Neural Inf. Process. Syst., Volume 35 (2022), pp. 8278-8290

[46] Wang, Sifan; Sankaran, Shyam; Perdikaris, Paris Respecting causality for training physics-informed neural networks, Comput. Methods Appl. Mech. Eng., Volume 421 (2024), 116813 | MR | Zbl | DOI

[47] Wang, Sifan; Teng, Yujun; Perdikaris, Paris Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks, SIAM J. Sci. Comput., Volume 43 (2021) no. 5, p. A3055-A3081 | MR | Zbl | DOI

[48] Wang, Sifan; Yu, Xinling; Perdikaris, Paris When and why PINNs fail to train: A neural tangent kernel perspective, J. Comput. Phys., Volume 449 (2022), 110768 | MR | Zbl | DOI

Cité par Sources :