A nonconforming primal hybrid finite element method for the two-dimensional vector Laplacian
The SMAI Journal of computational mathematics, Tome 10 (2024), pp. 85-106

We introduce a nonconforming hybrid finite element method for the two-dimensional vector Laplacian, based on a primal variational principle for which conforming methods are known to be inconsistent. Consistency is ensured using penalty terms similar to those used to stabilize hybridizable discontinuous Galerkin (HDG) methods, with a carefully chosen penalty parameter due to Brenner, Li, and Sung [Math. Comp., 76 (2007), pp. 573–595]. Our method accommodates elements of arbitrarily high order and, like HDG methods, it may be implemented efficiently using static condensation. The lowest-order case recovers the P 1 -nonconforming method of Brenner, Cui, Li, and Sung [Numer. Math., 109 (2008), pp. 509–533], and we show that higher-order convergence is achieved under appropriate regularity assumptions. The analysis makes novel use of a family of weighted Sobolev spaces, due to Kondrat’ev, for domains admitting corner singularities.

Publié le :
DOI : 10.5802/smai-jcm.107
Classification : 65N30, 65N15, 35Q60
Keywords: nonconforming finite element methods, hybridization, hydridizable discontinuous Galerkin methods, vector Laplacian, weighted Sobolev spaces

Barker, Mary  1   ; Cao, Shuhao  2   ; Stern, Ari  3

1 Public Health Sciences Division, Fred Hutchinson Cancer Center
2 Division of Computing, Analytics, and Mathematics, University of Missouri–Kansas City
3 Department of Mathematics, Washington University in St. Louis
@article{SMAI-JCM_2024__10__85_0,
     author = {Barker, Mary and Cao, Shuhao and Stern, Ari},
     title = {A nonconforming primal hybrid finite element method for the two-dimensional vector {Laplacian}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {85--106},
     year = {2024},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {10},
     doi = {10.5802/smai-jcm.107},
     mrnumber = {4758578},
     zbl = {07883471},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/smai-jcm.107/}
}
TY  - JOUR
AU  - Barker, Mary
AU  - Cao, Shuhao
AU  - Stern, Ari
TI  - A nonconforming primal hybrid finite element method for the two-dimensional vector Laplacian
JO  - The SMAI Journal of computational mathematics
PY  - 2024
SP  - 85
EP  - 106
VL  - 10
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://www.numdam.org/articles/10.5802/smai-jcm.107/
DO  - 10.5802/smai-jcm.107
LA  - en
ID  - SMAI-JCM_2024__10__85_0
ER  - 
%0 Journal Article
%A Barker, Mary
%A Cao, Shuhao
%A Stern, Ari
%T A nonconforming primal hybrid finite element method for the two-dimensional vector Laplacian
%J The SMAI Journal of computational mathematics
%D 2024
%P 85-106
%V 10
%I Société de Mathématiques Appliquées et Industrielles
%U https://www.numdam.org/articles/10.5802/smai-jcm.107/
%R 10.5802/smai-jcm.107
%G en
%F SMAI-JCM_2024__10__85_0
Barker, Mary; Cao, Shuhao; Stern, Ari. A nonconforming primal hybrid finite element method for the two-dimensional vector Laplacian. The SMAI Journal of computational mathematics, Tome 10 (2024), pp. 85-106. doi: 10.5802/smai-jcm.107

[1] Assous, Franck; Ciarlet, Patrick Jr; Sonnendrücker, Eric Resolution of the Maxwell equations in a domain with reentrant corners, RAIRO, Modélisation Math. Anal. Numér., Volume 32 (1998) no. 3, pp. 359-389 | DOI | MR | Numdam

[2] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Am. Math. Soc., Volume 47 (2010) no. 2, pp. 281-354 | Zbl | DOI | MR

[3] Boffi, Daniele; Brezzi, Franco; Fortin, Michel Mixed finite element methods and applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | MR | DOI

[4] Brenner, Susanne C.; Cui, Jintao; Li, Fengyan; Sung, Li-Yeng A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem, Numer. Math., Volume 109 (2008) no. 4, pp. 509-533 | DOI | MR

[5] Brenner, Susanne C.; Cui, Jintao; Nan, Z.; Sung, Li-Yeng Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations, Math. Comput., Volume 81 (2012) no. 278, pp. 643-659 | DOI | MR | Zbl

[6] Boffi, Daniele; Durán, Ricardo G.; Gastaldi, Lucia A remark on spurious eigenvalues in a square, Appl. Math. Lett., Volume 12 (1999) no. 3, pp. 107-114 | DOI | MR | Zbl

[7] Brenner, Susanne C.; Gedicke, Joscha; Sung, Li-Yeng Hodge decomposition for two-dimensional time-harmonic Maxwell’s equation: impedance boundary condition, Math. Methods Appl. Sci., Volume 40 (2017) no. 2, pp. 370-390 | DOI | MR

[8] Brenner, Susanne C.; Li, Fengyan; Sung, Li-Yeng A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations, Math. Comput., Volume 76 (2007) no. 258, pp. 573-595 | DOI | MR | Zbl

[9] Brenner, Susanne C.; Li, Fengyan; Sung, Li-Yeng A locally divergence-free interior penalty method for two-dimensional curl-curl problems, SIAM J. Numer. Anal., Volume 46 (2008) no. 3, pp. 1190-1211 | DOI | MR | Zbl

[10] Brenner, Susanne C.; Li, Fengyan; Sung, Li-Yeng A nonconforming penalty method for a two-dimensional curl-curl problem, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 4, pp. 651-668 | Zbl | DOI | MR

[11] Brenner, Susanne C.; Li, Fengyan; Sung, Li-Yeng Nonconforming Maxwell eigensolvers, J. Sci. Comput., Volume 40 (2009) no. 1-3, pp. 51-85 | Zbl | DOI | MR

[12] Brenner, Susanne C.; Sung, Li-Yeng A quadratic nonconforming vector finite element for H( curl ;Ω)H( div ;Ω), Appl. Math. Lett., Volume 22 (2009) no. 6, pp. 892-896 | Zbl | DOI | MR

[13] Birman, Mikhail Sh.; Solomyak, Mikhaĭl Z. L 2 -theory of the Maxwell operator in arbitrary domains, Usp. Mat. Nauk, Volume 42 (1987) no. 6, pp. 61-76 | MR | Zbl

[14] Costabel, Martin; Dauge, Monique Singularities of electromagnetic fields in polyhedral domains, Arch. Ration. Mech. Anal., Volume 151 (2000) no. 3, pp. 221-276 | DOI | MR | Zbl

[15] Costabel, Martin; Dauge, Monique Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math., Volume 93 (2002) no. 2, pp. 239-277 | DOI | Zbl

[16] Cockburn, Bernardo; Gopalakrishnan, Jayadeep; Lazarov, Raytcho Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., Volume 47 (2009) no. 2, pp. 1319-1365 | DOI | MR | Zbl

[17] Crouzeix, Michel; Raviart, Pierre-Arnaud Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Franc. Automat. Inform. Rech. Operat., Volume 7 (1973) no. R-3, pp. 33-76 | MR | Numdam

[18] Dauge, Monique Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, 1341, Springer, 1988 | DOI | MR

[19] Gibson, Thomas H.; Mitchell, Lawrence; Ham, David A.; Cotter, Colin J. Slate: extending Firedrake’s domain-specific abstraction to hybridized solvers for geoscience and beyond, Geosci. Model Dev., Volume 13 (2020) no. 2, pp. 735-761 | DOI

[20] Girault, Vivette; Raviart, Pierre-Arnaud Finite element methods for Navier–Stokes equations, Springer Series in Computational Mathematics, 5, Springer, 1986 | DOI | MR

[21] Hong, Qingguo; Li, Yuwen; Xu, Jinchao An extended Galerkin analysis in finite element exterior calculus, Math. Comput., Volume 91 (2022) no. 335, pp. 1077-1106 | Zbl | MR

[22] Hong, Qingguo; Wu, Shuonan; Xu, Jinchao An extended Galerkin analysis for elliptic problems, Sci. China, Math., Volume 64 (2021) no. 9, pp. 2141-2158 | DOI | MR | Zbl

[23] Kozlov, Vladimir A.; Maz’ya, Vladimir G.; Rossmann, Jurgen Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, 52, American Mathematical Society, 1997 | MR

[24] Kondrat’ev, Vladimir A. Boundary value problems for elliptic equations in domains with conical or angular points, Tr. Mosk. Mat. O.-va, Volume 16 (1967), pp. 209-292 | MR

[25] Li, Buyang; Zhang, Zhimin A new approach for numerical simulation of the time-dependent Ginzburg–Landau equations, J. Comput. Phys., Volume 303 (2015), pp. 238-250 | Zbl | MR

[26] Li, Buyang; Zhang, Zhimin Mathematical and numerical analysis of the time-dependent Ginzburg–Landau equations in nonconvex polygons based on Hodge decomposition, Math. Comput., Volume 86 (2017) no. 306, pp. 1579-1608 | MR | Zbl

[27] Mirebeau, Jean-Marie Nonconforming vector finite elements for H( curl ;Ω)H( div ;Ω), Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 369-373 | DOI | MR | Zbl

[28] Monk, Peter Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 2003 | DOI | MR

[29] Nazarov, Sergey A.; Plamenevsky, Boris A. Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, 13, Walter de Gruyter, 1994 | DOI | MR

[30] Rathgeber, Florian; Ham, David A.; Mitchell, Lawrence; Lange, Michael; Luporini, Fabio; McRae, Andrew T. T.; Bercea, Gheorghe-Teodor; Markall, Graham R.; Kelly, Paul H. J. Firedrake: automating the finite element method by composing abstractions, ACM Trans. Math. Softw., Volume 43 (2017) no. 3, 24, 27 pages | Zbl

[31] Raviart, Pierre-Arnaud; Thomas, Jean-Marie Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comput., Volume 31 (1977), pp. 391-413 | Zbl | DOI | MR

[32] Schneider, Cornelia Beyond Sobolev and Besov: regularity of solutions of PDEs and their traces in function spaces, Lecture Notes in Mathematics, 2291, Springer, 2021 | MR

[33] Schatz, Alfred H. An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comput., Volume 28 (1974), pp. 959-962 | DOI | MR | Zbl

Cité par Sources :