A reduced basis method for frictional contact problems formulated with Nitsche’s method
The SMAI Journal of computational mathematics, Tome 10 (2024), pp. 29-54

We develop an efficient reduced basis method for the frictional contact problem formulated using Nitsche’s method. We focus on the regime of small deformations and on Tresca friction. The key idea ensuring the computational efficiency of the method is to treat the nonlinearity resulting from the contact and friction conditions by means of the Empirical Interpolation Method. The proposed algorithm is applied to the Hertz contact problem between two half-disks with parameter-dependent radius. We also highlight the benefits of the present approach with respect to the mixed (primal-dual) formulation.

Publié le :
DOI : 10.5802/smai-jcm.105
Classification : 65N99, 65Y20, 68U20
Keywords: model reduction, variational inequalities, reduced basis method, contact problems, Nitsche’s method, Tresca friction, Coulomb friction

Niakh, Idrissa  1   ; Drouet, Guillaume  2   ; Ehrlacher, Virginie  3   ; Ern, Alexandre  3

1 EDF R&D, 7 Boulevard Gaspard Monge, 91120 Palaiseau, France & CERMICS, École des Ponts, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée cedex 2, France & INRIA Paris, 2 Rue Simone Iff, 75012 Paris, France
2 EDF R&D, 7 Boulevard Gaspard Monge, 91120 Palaiseau, France
3 CERMICS, École des Ponts, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée cedex 2, France & INRIA Paris, 2 Rue Simone Iff, 75012 Paris, France
@article{SMAI-JCM_2024__10__29_0,
     author = {Niakh, Idrissa and Drouet, Guillaume and Ehrlacher, Virginie and Ern, Alexandre},
     title = {A reduced basis method for frictional contact problems formulated with {Nitsche{\textquoteright}s} method},
     journal = {The SMAI Journal of computational mathematics},
     pages = {29--54},
     year = {2024},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {10},
     doi = {10.5802/smai-jcm.105},
     mrnumber = {4758576},
     zbl = {1543.65196},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/smai-jcm.105/}
}
TY  - JOUR
AU  - Niakh, Idrissa
AU  - Drouet, Guillaume
AU  - Ehrlacher, Virginie
AU  - Ern, Alexandre
TI  - A reduced basis method for frictional contact problems formulated with Nitsche’s method
JO  - The SMAI Journal of computational mathematics
PY  - 2024
SP  - 29
EP  - 54
VL  - 10
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://www.numdam.org/articles/10.5802/smai-jcm.105/
DO  - 10.5802/smai-jcm.105
LA  - en
ID  - SMAI-JCM_2024__10__29_0
ER  - 
%0 Journal Article
%A Niakh, Idrissa
%A Drouet, Guillaume
%A Ehrlacher, Virginie
%A Ern, Alexandre
%T A reduced basis method for frictional contact problems formulated with Nitsche’s method
%J The SMAI Journal of computational mathematics
%D 2024
%P 29-54
%V 10
%I Société de Mathématiques Appliquées et Industrielles
%U https://www.numdam.org/articles/10.5802/smai-jcm.105/
%R 10.5802/smai-jcm.105
%G en
%F SMAI-JCM_2024__10__29_0
Niakh, Idrissa; Drouet, Guillaume; Ehrlacher, Virginie; Ern, Alexandre. A reduced basis method for frictional contact problems formulated with Nitsche’s method. The SMAI Journal of computational mathematics, Tome 10 (2024), pp. 29-54. doi: 10.5802/smai-jcm.105

[1] Baillet, Laurent; Sassi, Taoufik Mixed finite element methods for the Signorini problem with friction, Numer. Methods Partial Differ. Equations, Volume 22 (2006) no. 6, pp. 1489-1508 | DOI | MR | Zbl

[2] Balajewicz, Maciej; Amsallem, David; Farhat, Charbel Projection-based model reduction for contact problems, Int. J. Numer. Methods Eng., Volume 106 (2016) no. 8, pp. 644-663 | DOI | MR | Zbl

[3] Barrault, Maxime; Maday, Yvon; Nguyen, Ngoc Cuong; Patera, Anthony T. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 9, pp. 667-672 | DOI | Zbl | Numdam | MR

[4] Benaceur, Amina; Ern, Alexandre; Ehrlacher, Virginie A reduced basis method for parametrized variational inequalities applied to contact mechanics, Int. J. Numer. Methods Eng., Volume 121 (2020) no. 6, pp. 1170-1197 | DOI | MR

[5] Buffa, Annalisa; Maday, Yvon; Patera, Anthony T.; Prud’Homme, Christophe; Turinici, Gabriel A priori convergence of the greedy algorithm for the parametrized reduced basis method, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012) no. 3, pp. 595-603 | DOI | MR | Numdam | Zbl

[6] Chouly, Franz An adaptation of Nitsche’s method to the Tresca friction problem, J. Math. Anal. Appl., Volume 411 (2014) no. 1, pp. 329-339 | DOI | MR | Zbl

[7] Chouly, Franz; Ern, Alexandre; Pignet, Nicolas A hybrid high-order discretization combined with Nitsche’s method for contact and Tresca friction in small strain elasticity, SIAM J. Sci. Comput., Volume 42 (2020) no. 4, p. A2300-A2324 | DOI | MR | Zbl

[8] Chouly, Franz; Fabre, Mathieu; Hild, Patrick; Mlika, Rabii; Pousin, Jérôme; Renard, Yves An overview of recent results on Nitsche’s method for contact problems, Geometrically unfitted finite element methods and applications (Lecture Notes in Computational Science and Engineering), Volume 121, Springer, 2017, pp. 93-141 | DOI | Zbl | MR

[9] Chouly, Franz; Hild, Patrick A Nitsche-based method for unilateral contact problems: numerical analysis, SIAM J. Numer. Anal., Volume 51 (2013) no. 2, pp. 1295-1307 | DOI | MR | Zbl

[10] Chouly, Franz; Hild, Patrick; Lleras, Vanessa; Renard, Yves Nitsche method for contact with Coulomb friction: existence results for the static and dynamic finite element formulations, J. Comput. Appl. Math., Volume 416 (2022), 114557, 18 pages | DOI | MR | Zbl

[11] Chouly, Franz; Hild, Patrick; Renard, Yves Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments, Math. Comput., Volume 84 (2015) no. 293, pp. 1089-1112 | DOI | MR | Zbl

[12] Curnier, Alain; Alart, Pierre A generalized Newton method for contact problems with friction, J. Méc. Théor. Appl., Volume 7 (1988) no. suppl. 1, pp. 67-82 | MR | Zbl

[13] Duvaut, Georges; Lions, Jacques-Louis Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques, 21, Dunod, 1972, xx+387 pages | MR

[14] Fauque, Jules; Ramière, Isabelle; Ryckelynck, David Hybrid hyper-reduced modeling for contact mechanics problems, Int. J. Numer. Methods Eng., Volume 115 (2018) no. 1, pp. 117-139 | DOI | MR

[15] Fichera, Gaetano Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., Sez. I, VIII. Ser., Volume 7 (1964), pp. 91-140 | MR | Zbl

[16] Fortin, Michel; Glowinski, Roland Augmented Lagrangian methods. Applications to the numerical solution of boundary value problems, Studies in Mathematics and its Applications, 15, North-Holland, 1983, xix+340 pages (translated from the French by B. Hunt and D. C. Spicer)

[17] Gustafsson, Tom; Stenberg, Rolf; Videman, Juha On Nitsche’s method for elastic contact problems, SIAM J. Sci. Comput., Volume 42 (2020) no. 2, p. B425-B446 | Zbl | MR | DOI

[18] Gustafsson, Tom; Videman, Juha Stabilized finite elements for Tresca friction problem, ESAIM, Math. Model. Numer. Anal., Volume 56 (2022) no. 4, pp. 1307-1326 | MR | Zbl | DOI

[19] Haasdonk, Bernard Convergence rates of the POD-greedy method, ESAIM, Math. Model. Numer. Anal., Volume 47 (2013) no. 3, pp. 859-873 | DOI | MR | Numdam | Zbl

[20] Haasdonk, Bernard; Salomon, Julien; Wohlmuth, Barbara A reduced basis method for parametrized variational inequalities, SIAM J. Numer. Anal., Volume 50 (2012) no. 5, pp. 2656-2676 | DOI | MR | Zbl

[21] Hesthaven, Jan S.; Rozza, Gianluigi; Stamm, Benjamin Certified reduced basis methods for parametrized partial differential equations, SpringerBriefs in Mathematics, 590, Springer, 2016 | MR | DOI

[22] Johnson, K. L. Contact mechanics, Cambridge University Press, 1987

[23] Kikuchi, Noboru; Oden, John T. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics, 1988, xiv+495 pages | MR | DOI

[24] Kollepara, Kiran Sagar; Navarro-Jiménez, José M.; Le Guennec, Yves; Silva, Luisa; Aguado, José V. On the limitations of low-rank approximations in contact mechanics problems, Int. J. Numer. Methods Eng., Volume 124 (2023) no. 1, pp. 217-234 | DOI | MR | Zbl

[25] Kunisch, Karl; Volkwein, Stefan Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., Volume 90 (2001) no. 1, pp. 117-148 | DOI | MR | Zbl

[26] Le Berre, Simon; Ramière, Isabelle; Fauque, Jules; Ryckelynck, David Condition number and clustering-based efficiency improvement of reduced-order solvers for contact problems using Lagrange multipliers, Mathematics, Volume 10 (2022), pp. 1495-1520 | DOI

[27] Maday, Yvon; Nguyen, Ngoc Cuong; Patera, Anthony T.; Pau, S. H. A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Anal., Volume 8 (2009) no. 1, pp. 383-404 | DOI | MR | Zbl

[28] Mlika, Rabii; Renard, Yves; Chouly, Franz An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact, Comput. Methods Appl. Mech. Eng., Volume 325 (2017), pp. 265-288 | DOI | MR | Zbl

[29] Niakh, Idrissa; Drouet, Guillaume; Ehrlacher, Virginie; Ern, Alexandre Stable model reduction for linear variational inequalities with parameter-dependent constraints (2022) (to appear in ESAIM, Math. Model. Numer. Anal., https://hal.archives-ouvertes.fr/hal-03611982)

[30] Nitsche, J. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hamb., Volume 36 (1971), pp. 9-15 | MR | Zbl | DOI

[31] Prud’Homme, Christophe; Rovas, Dimitrios V.; Veroy, Karen; Machiels, Luc; Maday, Yvon; Patera, Anthony T.; Turinici, Gabriel Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, J. Fluid Mech., Volume 124 (2002) no. 1, pp. 70-80

[32] Quarteroni, Alfio; Manzoni, Andrea; Negri, Federico Reduced basis methods for partial differential equations: an introduction, Unitext, 92, Springer, 2015 | MR

[33] Renard, Yves; Poulios, Konstantinos GetFEM: Automated FE modeling of multiphysics problems based on a generic weak form language (2020) (https://hal.archives-ouvertes.fr/hal-02532422)

[34] Sofonea, Mircea; Matei, Andaluzia Mathematical models in contact mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, 2012 | DOI

[35] Stampacchia, Guido Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, Volume 258 (1964), pp. 4413-4416 | MR | Zbl

[36] Wriggers, Peter Computational Contact Mechanics, 2, Springer, 2006, xii+518 pages | DOI

[37] Zeka, Donald; Guidault, Pierre-Alain; Néron, David; Guiton, Martin; Enchéry, Guillaume Preliminary study for the simulation of wire ropes using a model reduction approach suitable for multiple contacts, 25ème Congrès Français de Mécanique (2022)

Cité par Sources :