The abcd conjecture, uniform boundedness, and dynamical systems
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 119-134

We survey Vojta’s higher-dimensional generalizations of the abc conjecture and Szpiro’s conjecture as well as recent developments that apply them to various problems in arithmetic dynamics. In particular, the “abcd conjecture” implies a dynamical analogue of a conjecture on the uniform boundedness of torsion points and a dynamical analogue of Lang’s conjecture on lower bounds for canonical heights.

Nous décrivons des généralisations en dimension supérieure dues à Vojta de la conjecture abc et de la conjecture de Szpiro, ainsi que des avancées récentes qui les utilisent dans des problèmes variés de dynamique arithmétique. En particulier, la « conjecture abcd » implique un analogue dynamique de la conjecture de torsion et un analogue dynamique de la conjecture de Lang sur les minorations de hauteurs canoniques.

Reçu le :
Révisé le :
Publié le :
DOI : 10.5802/pmb.58

Zhang, Robin  1 , 2

1 Department of Mathematics, Columbia University, USA
2 Department of Mathematics, Massachusetts Institute of Technology, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2024____119_0,
     author = {Zhang, Robin},
     title = {The $abcd$ conjecture, uniform boundedness, and dynamical systems},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {119--134},
     year = {2024},
     publisher = {Presses universitaires de Franche-Comt\'e},
     doi = {10.5802/pmb.58},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/pmb.58/}
}
TY  - JOUR
AU  - Zhang, Robin
TI  - The $abcd$ conjecture, uniform boundedness, and dynamical systems
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2024
SP  - 119
EP  - 134
PB  - Presses universitaires de Franche-Comté
UR  - https://www.numdam.org/articles/10.5802/pmb.58/
DO  - 10.5802/pmb.58
LA  - en
ID  - PMB_2024____119_0
ER  - 
%0 Journal Article
%A Zhang, Robin
%T The $abcd$ conjecture, uniform boundedness, and dynamical systems
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2024
%P 119-134
%I Presses universitaires de Franche-Comté
%U https://www.numdam.org/articles/10.5802/pmb.58/
%R 10.5802/pmb.58
%G en
%F PMB_2024____119_0
Zhang, Robin. The $abcd$ conjecture, uniform boundedness, and dynamical systems. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 119-134. doi: 10.5802/pmb.58

[1] Baker, Alan Experiments on the abc-conjecture, Publ. Math. Debr., Volume 65 (2004) no. 3-4, pp. 253-260 | MR | DOI | Zbl

[2] Baker, Matthew; Rumely, Robert Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010, xxxiv+428 pages | DOI | MR

[3] Browkin, Jerzy; Brzeziński, Juliusz Some remarks on the abc-conjecture, Math. Comput., Volume 62 (1994) no. 206, pp. 931-939 | DOI | MR

[4] Cadoret, Anna; Tamagawa, Akio Uniform boundedness of p-primary torsion of abelian schemes, Invent. Math., Volume 188 (2012) no. 1, pp. 83-125 | DOI | MR | Zbl

[5] Cadoret, Anna; Tamagawa, Akio Note on torsion conjecture, Geometric and differential Galois theories (Séminaires et Congrès), Volume 27, Société Mathématique de France, 2013, pp. 57-68 | MR

[6] Cadoret, Anna; Tamagawa, Akio A uniform open image theorem for -adic representations, II, Duke Math. J., Volume 162 (2013) no. 12, pp. 2301-2344 | DOI | MR | Zbl

[7] Canci, Jung Kyu Rational periodic points for quadratic maps, Ann. Inst. Fourier, Volume 60 (2010) no. 3, pp. 953-985 | MR | DOI | Numdam | Zbl

[8] Canci, Jung Kyu; Paladino, Laura Preperiodic points for rational functions defined over a global field in terms of good reduction, Proc. Am. Math. Soc., Volume 144 (2016) no. 12, pp. 5141-5158 | DOI | MR | Zbl

[9] Castelvecchi, Davide Mathematical proof that rocked number theory will be published, Nature, Volume 580 (2020) no. 177

[10] Chevalley, Claude Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys, 6, American Mathematical Society, 1951, xi+188 pages | MR | DOI

[11] Chim, Kwok Chi; Shorey, Tarlok Nath; Sinha, Sneh Bala On Baker’s explicit abc-conjecture, Publ. Math. Debr., Volume 94 (2019) no. 3-4, pp. 435-453 | DOI | MR | Zbl

[12] Clark, Pete L.; Xarles, Xavier Local bounds for torsion points on abelian varieties, Can. J. Math., Volume 60 (2008) no. 3, pp. 532-555 | DOI | MR | Zbl

[13] Dupuy, Taylor; Hilado, Anton The Statement of Mochizuki’s Corollary 3.12, Initial Theta Data, and the First Two Indeterminacies (2020) | arXiv

[14] Elkies, Noam D. ABC implies Mordell, Int. Math. Res. Not. (1991) no. 7, pp. 99-109 | DOI | MR | Zbl

[15] Elkik, Renée; Goldfeld, Dorian; Martin-Deschamps, Mireille; Peskine, Christian; Tucker, Thomas; Zhang, Shou-Wu Lucien Szpiro (1941–2020), Notices Am. Math. Soc., Volume 68 (2021) no. 10, pp. 1763-1777 | DOI | MR | Zbl

[16] Fakhruddin, Najmuddin Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc., Volume 18 (2003) no. 2, pp. 109-122 | MR | Zbl

[17] Gaudron, Éric; Rémond, Gaël Torsion des variétés abéliennes CM, Proc. Am. Math. Soc., Volume 146 (2018) no. 7, pp. 2741-2747 | DOI | MR | Zbl

[18] Goldfeld, Dorian Beyond the Last Theorem, Math Horizons, Volume 4 (1996) no. 1, pp. 26-34 | DOI

[19] Goldfeld, Dorian Modular forms, elliptic curves and the ABC-conjecture, A panorama of number theory or the view from Baker’s garden (Zürich, 1999), Cambridge University Press, 2002, pp. 128-147 | DOI | MR | Zbl

[20] The Princeton companion to mathematics (Gowers, Timothy; Barrow-Green, June; Leader, Imre, eds.), Princeton University Press, 2008, xxii+1034 pages | MR

[21] Granville, Andrew Rational and integral points on quadratic twists of a given hyperelliptic curve, Int. Math. Res. Not. (2007) no. 8, 027, 24 pages | DOI | MR

[22] Granville, Andrew; Stark, Harold M. abc implies no “Siegel zeros” for L-functions of characters with negative discriminant, Invent. Math., Volume 139 (2000) no. 10, pp. 1224-1231 | MR

[23] Granville, Andrew; Tucker, Thomas J. It’s as easy as abc, Notices Am. Math. Soc., Volume 49 (2002) no. 10, pp. 1224-1231 | MR | Zbl

[24] Hindry, Marc; Silverman, Joseph H. The canonical height and integral points on elliptic curves, Invent. Math., Volume 93 (1988) no. 2, pp. 419-450 | DOI | MR | Zbl

[25] Hindry, Marc; Silverman, Joseph H. Sur le nombre de points de torsion rationnels sur une courbe elliptique, C. R. Math. Acad. Sci. Paris, Volume 329 (1999) no. 2, pp. 97-100 | DOI | MR | Zbl

[26] Hindry, Marc; Silverman, Joseph H. Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiv+558 pages | DOI | MR

[27] Ingram, Patrick Lower bounds on the canonical height associated to the morphism ϕ(z)=z d +c, Monatsh. Math., Volume 157 (2009) no. 1, pp. 69-89 | DOI | MR | Zbl

[28] Ingram, Patrick The critical height is a moduli height, Duke Math. J., Volume 167 (2018) no. 7, pp. 1311-1346 | DOI | MR | Zbl

[29] Kamienny, Sheldon Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math., Volume 109 (1992) no. 2, pp. 221-229 | DOI | MR | Zbl

[30] Kamienny, Sheldon; Mazur, Barry Rational torsion of prime order in elliptic curves over number fields, Columbia University number theory seminar, New York, 1992 (Astérisque), Volume 228, Société Mathématique de France, 1995, pp. 81-100 (with an appendix by A. Granville) | MR | Numdam

[31] Kim, Minhyong; Thakur, Dinesh S.; Voloch, José Felipe Diophantine approximation and deformation, Bull. Soc. Math. Fr., Volume 128 (2000) no. 4, pp. 585-598 | MR | Numdam | Zbl

[32] Klarreich, Erica Titans of Mathematics Clash Over Epic Proof of ABC Conjecture, Quanta Magazine (2018) (https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/)

[33] Laishram, Shanta; Shorey, Tarlok Nath Baker’s explicit abc-conjecture and applications, Acta Arith., Volume 155 (2012) no. 4, pp. 419-429 | DOI | MR | Zbl

[34] Lang, Serge Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, 231, Springer, 1978, xi+261 pages | MR | DOI

[35] Lang, Serge Introduction to algebraic and abelian functions, Graduate Texts in Mathematics, 89, Springer, 1982, ix+169 pages | MR | DOI

[36] Lazarsfeld, Robert Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004, xviii+387 pages | MR | DOI

[37] Looper, Nicole R. A lower bound on the canonical height for polynomials, Math. Ann., Volume 373 (2019) no. 3-4, pp. 1057-1074 | DOI | MR | Zbl

[38] Looper, Nicole R. Dynamical uniform boundedness and the abc-conjecture, Invent. Math., Volume 225 (2021) no. 1, pp. 1-44 | DOI | MR | Zbl

[39] Looper, Nicole R. The Uniform Boundedness and Dynamical Lang Conjectures for polynomials (2021) | arXiv

[40] Masser, David W. On abc and discriminants, Proc. Am. Math. Soc., Volume 130 (2002) no. 11, pp. 3141-3150 | DOI | MR | Zbl

[41] Mazur, Barry Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 33-186 (with an appendix by Mazur and M. Rapoport) | Zbl | MR | DOI | Numdam

[42] Mazur, Barry Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math., Volume 44 (1978) no. 2, pp. 129-162 | DOI | MR | Zbl

[43] Merel, Loïc Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | MR | Zbl

[44] Mochizuki, Shinichi Inter-universal Teichmüller theory I: Construction of Hodge theaters, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 3-207 | DOI | MR | Zbl

[45] Mochizuki, Shinichi Inter-universal Teichmüller theory II: Hodge-Arakelov-theoretic evaluation, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 209-401 | DOI | MR | Zbl

[46] Mochizuki, Shinichi Inter-universal Teichmüller theory III: Canonical splittings of the log-theta-lattice, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 403-626 | Zbl | DOI | MR

[47] Mochizuki, Shinichi Inter-universal Teichmüller theory IV: Log-volume computations and set-theoretic foundations, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 627-723 | DOI | MR | Zbl

[48] Mochizuki, Shinichi On the essential logical structure of inter-universal Teichmüller theory in terms of logical and “”/logical or “” relations: report on the occasion of the publication of the four main papers on inter-universal Teichmüller theory, https://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1968.pdf, 2022

[49] Mochizuki, Shinichi; Fesenko, Ivan; Hoshi, Yuichiro; Minamide, Arata; Porowski, Wojciech Explicit estimates in inter-universal Teichmüller theory, Kodai Math. J., Volume 45 (2022) no. 2, pp. 175-236 | Zbl

[50] Morton, Patrick; Silverman, Joseph H. Rational periodic points of rational functions, Int. Math. Res. Not. (1994) no. 2, pp. 97-110 | DOI | MR | Zbl

[51] Northcott, Douglas G. Periodic points on an algebraic variety, Ann. Math., Volume 51 (1950), pp. 167-177 | DOI | MR | Zbl

[52] Oesterlé, Joseph Nouvelles approches du “théorème” de Fermat, Séminaire Bourbaki, Vol. 1987/88 (Astérisque), Société Mathématique de France, 1988 no. 161-162 (Exp. No. 694, 22 pages) | MR | Numdam | Zbl

[53] Panraksa, Chatchawan Rational Periodic Points of x d +c andabc-Conjecture, Unpublished note, 2021

[54] Panraksa, Chatchawan Rational periodic points of x d +c and Fermat-Catalan equations, Int. J. Number Theory, Volume 18 (2022) no. 5, pp. 1111-1129 | DOI | MR | Zbl

[55] Parent, Pierre Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, J. Reine Angew. Math., Volume 506 (1999), pp. 85-116 | DOI | MR | Zbl

[56] Remaekers, Coen The abc-conjecture and the n-conjecture, Bachelor’s thesis, Eindhoven University of Technology, 2009

[57] Schappacher, Norbert; Schoof, René Beppo Levi and the arithmetic of elliptic curves, Math. Intell., Volume 18 (1996) no. 1, pp. 57-69 | DOI | MR | Zbl

[58] Scholze, Peter; Stix, Jakob Why abc is still a conjecture, https://www.math.uni-bonn.de/people/scholze/WhyABCisStillaConjecture.pdf, 2018

[59] Silverberg, Alice Torsion points on abelian varieties of CM-type, Compos. Math., Volume 68 (1988) no. 3, pp. 241-249 | MR | Numdam | Zbl

[60] Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | DOI | MR

[61] Silverman, Joseph H. The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007, x+511 pages | DOI | MR

[62] The Stacks Project Authors Stacks Project, 2021 (http://stacks.math.columbia.edu)

[63] Stichtenoth, Henning Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer, 2009, xiv+355 pages | MR | DOI

[64] Tate, John Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 476 (1975), pp. 33-52 | MR | Zbl

[65] Vojta, Paul Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, 1239, Springer, 1987, x+132 pages | DOI | MR

[66] Vojta, Paul A more general abc conjecture, Int. Math. Res. Not. (1998) no. 21, pp. 1103-1116 | DOI | MR | Zbl

[67] Voloch, José Felipe Commitment schemes and diophantine equations, ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium (The Open Book Series), Volume 4, Mathematical Sciences Publishers (2020), pp. 1-5 | DOI | MR | Zbl

[68] Waldschmidt, Michel Lecture on the abc conjecture and some of its consequences, Mathematics in the 21st century (Springer Proceedings in Mathematics & Statistics), Volume 98, Springer, 2015, pp. 211-230 | DOI | MR | Zbl

[69] Zhang, Robin A Galois-dynamics correspondence for unicritical polynomials, Arnold Math. J., Volume 7 (2021) no. 3, pp. 467-481 | DOI | MR | Zbl

Cité par Sources :