On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 59-104

Given a smooth projective connected surface over embedded into a projective space d and a smooth projective curve C embedded into the surface we study the kernel of the Gysin homomorphism between the Chow groups of 0-cycles of degree zero of the curve and the surface induced by the closed embedding. Following the approach of Bannerjee and Guletskii we prove that the kernel of the Gysin homomorphism is a countable union of translates of an abelian subvariety A inside the Jacobian J of the curve C. We also prove that there is a c-open subset U 0 contained in the set U( d ) * parametrizing the smooth projective curves such that A=0 or A=B for all curves parametrized by U 0 , where B is the abelian subvariety of J corresponding to the vanishing cohomology H 1 (C,) van of C.

We give a background of algebraic cycles, Chow groups, Hodge structures, the Abel–Jacobi map, Lefschetz pencils and the irreducibility of the monodromy representation.

Étant donné une surface lisse projective connexe sur plongée dans un espace projectif d et C une courbe lisse projective plongée dans la surface, on étudie le noyau de l’homomorphisme de Gysin entre les groupes de Chow des 0-cycles de degré zéro de la courbe et de la surface induit par l’injection fermée. Suivant l’approche de Bannerjee and Guletskii, on démontre que le noyau de l’homomorphisme de Gysin est une union dénombrable de translatées d’une sous-variété abélienne A dans la Jacobienne J de la courbe C. On démontre également qu’il existe un sous-ensemble c-ouvert U 0 de l’ensemble U( d ) * paramétrisant les courbes lisses projectives tel que A=0 ou A=B pour toute courbe paramétrisée par U 0 , où B est la sous-variété abélienne de J correspondant à la cohomologie évanescente H 1 (C,) van de C.

On donne une introduction aux cycles algébriques, aux groupes de Chow, aux structures de Hodge, à l’application d’Abel–Jacobi, aux pinceaux de Lefschetz et à l’irréductibilité de la représentation de monodromie.

Reçu le :
Révisé le :
Publié le :
DOI : 10.5802/pmb.56
Keywords: $0$-cycles, rational, algebraic and homological equivalence, Chow groups, Hodge theory, Lefschetz pencils, the monodromy argument, Gysin homomorphism

Paucar, Rina  1   ; Schoemann, Claudia  2

1 Instituto de Matemática y Ciencias Afines (IMCA), Universidad Nacional de Ingenería (UNI), Lima, Perú
2 Laboratoire GAATI, Université de la Polynésie française, 98702 Faa’a, Polynésie française
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2024____59_0,
     author = {Paucar, Rina and Schoemann, Claudia},
     title = {On the {Kernel} of the {Gysin} {Homomorphism} on {Chow} {Groups} of {Zero} {Cycles}},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {59--104},
     year = {2024},
     publisher = {Presses universitaires de Franche-Comt\'e},
     doi = {10.5802/pmb.56},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/pmb.56/}
}
TY  - JOUR
AU  - Paucar, Rina
AU  - Schoemann, Claudia
TI  - On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2024
SP  - 59
EP  - 104
PB  - Presses universitaires de Franche-Comté
UR  - https://www.numdam.org/articles/10.5802/pmb.56/
DO  - 10.5802/pmb.56
LA  - en
ID  - PMB_2024____59_0
ER  - 
%0 Journal Article
%A Paucar, Rina
%A Schoemann, Claudia
%T On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2024
%P 59-104
%I Presses universitaires de Franche-Comté
%U https://www.numdam.org/articles/10.5802/pmb.56/
%R 10.5802/pmb.56
%G en
%F PMB_2024____59_0
Paucar, Rina; Schoemann, Claudia. On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 59-104. doi: 10.5802/pmb.56

[1] Banerjee, Kalyan; Guletskiĭ, Vladimir Etale monodromy and rational equivalence for 1-cycles on cubic hypersurfaces in 5 , Mat. Sb., Volume 211 (2020) no. 2, pp. 3-45 | DOI | MR | Zbl

[2] Bloch, Spencer K 2 of Artinian Q-algebras, with application to algebraic cycles, Commun. Algebra, Volume 3 (1975), pp. 405-428 | DOI | MR | Zbl

[3] Bloch, Spencer An example in the theory of algebraic cycles, Algebraic K-theory (Lecture Notes in Mathematics), Volume 551, Springer, 1976, pp. 1-29 | MR | Zbl

[4] Bloch, Spencer Lectures on algebraic cycles, New Mathematical Monographs, 16, Cambridge University Press, 2010, xxiv+130 pages | DOI | MR

[5] Bloch, Spencer; Kas, Arnold; Lieberman, David Zero cycles on surfaces with p g =0, Compos. Math., Volume 33 (1976) no. 2, pp. 135-145 | MR | Zbl

[6] Eisenbud, David; Harris, Joe 3264 & All That Intersection Theory in Algebraic Geometry, 2013

[7] Fulton, William Intersection theory, Princeton University Press, 2016

[8] Fulton, William; Hansen, Johan A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. Math., Volume 110 (1979) no. 1, pp. 159-166 | DOI | MR | Zbl

[9] Harris, Joe Algebraic geometry: a first course, 133, Springer, 2013

[10] Hartshorne, Robin Equivalence relations on algebraic cycles and subvarieties of small codimension, Algebraic geometry, Arcata 1974 (Proceedings of Symposia in Pure Mathematics), Volume 29, American Mathematical Society, 1975, pp. 129-164 | DOI | MR | Zbl

[11] Hartshorne, Robin Algebraic geometry, 52, Springer, 2013

[12] Kleiman, Steven Algebraic cycles and the Weil conjectures, Advanced Studies in Pure Mathematics, 3, North-Holland, 1968, pp. 359-386 | MR

[13] Lamotke, Klaus The topology of complex projective varieties after S. Lefschetz, Topology, Volume 20 (1981), pp. 15-51 | DOI | MR | Zbl

[14] Milne, James Abelian Varieties (v2.00), 2008, p. vi+166 (available at www.jmilne.org/math/)

[15] Milne, James Lectures on Etale Cohomology (v2.21), 2013, p. 202 (available at www.jmilne.org/math/)

[16] Mumford, David Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ., Volume 9 (1969) no. 2, pp. 195-204 | MR | Zbl

[17] Murre, Jacob Un résultat en théorie des cycles algébriques de codimension deux, C. R. Math. Acad. Sci. Paris, Volume 296 (1983) no. 23, pp. 981-984 | MR | Zbl

[18] Murre, Jacob; Nagel, Jan; Peters, Chris Lectures on the theory of pure motives, University Lecture Series, 61, American Mathematical Society, 2013, x+149 pages | DOI | MR

[19] Peters, Chris; Steenbrink, Joseph Mixed hodge structures, 52, Springer, 2008

[20] Roĭtman, A. A. Rational equivalence of zero-dimensional cycles, Mat. Sb., N. Ser., Volume 89(131) (1972), p. 569-585, 671 | MR

[21] Tevelev, Evgueni Projective Duality and Homogeneous Spaces: Invariant Theory and Algebraic Transformation Groups, Encyclopaedia of Mathematical Sciences, 133, Springer, 2005

[22] Voisin, Claire Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, 2002, x+322 pages (translated from the French original by Leila Schneps) | DOI | MR

[23] Voisin, Claire Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics, 77, Cambridge University Press, 2003, x+351 pages (translated from the French by Leila Schneps) | DOI | MR

Cité par Sources :