p-adic Directions of Primitive Vectors
[Directions p-adique de vecteurs primitifs]
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2023), pp. 85-107

Linnik type problems concern the distribution of projections of integral points on the unit sphere as their norm increases, and different generalizations of this phenomenon. Our work addresses a question of this type: we prove the uniform distribution of the projections of primitive 2 points in the p-adic unit sphere, as their (real) norm tends to infinity. The proof is via counting lattice points in semi-simple S-arithmetic groups.

Les problèmes de type Linnik concernent la distribution des projections des points entiers sur la sphère unitaire lorsque leur norme augmente et différentes généralisations de ce phénomène. Notre travail s’intéresse à une question de ce type : nous prouvons la distribution uniforme des projections des points primitifs de 2 sur la sphère unitaire p-adique lorsque leur norme (réelle) tend vers l’infini. La preuve se fait en comptant les points d’un réseau dans des S-groupes arithmétiques semi-simples.

Publié le :
DOI : 10.5802/pmb.50

Guilloux, Antonin 1 ; Horesh, Tal 2

1 IMJ-PRG, OURAGAN, Sorbonne Université, CNRS, INRIA, France
2 IST Austria
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2023____85_0,
     author = {Guilloux, Antonin and Horesh, Tal},
     title = {$p$-adic {Directions} of {Primitive} {Vectors}},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {85--107},
     year = {2023},
     publisher = {Presses universitaires de Franche-Comt\'e},
     doi = {10.5802/pmb.50},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/pmb.50/}
}
TY  - JOUR
AU  - Guilloux, Antonin
AU  - Horesh, Tal
TI  - $p$-adic Directions of Primitive Vectors
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2023
SP  - 85
EP  - 107
PB  - Presses universitaires de Franche-Comté
UR  - https://www.numdam.org/articles/10.5802/pmb.50/
DO  - 10.5802/pmb.50
LA  - en
ID  - PMB_2023____85_0
ER  - 
%0 Journal Article
%A Guilloux, Antonin
%A Horesh, Tal
%T $p$-adic Directions of Primitive Vectors
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2023
%P 85-107
%I Presses universitaires de Franche-Comté
%U https://www.numdam.org/articles/10.5802/pmb.50/
%R 10.5802/pmb.50
%G en
%F PMB_2023____85_0
Guilloux, Antonin; Horesh, Tal. $p$-adic Directions of Primitive Vectors. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2023), pp. 85-107. doi: 10.5802/pmb.50

[1] Aka, Menny; Einsiedler, Manfred; Shapira, Uri Integer points on spheres and their orthogonal grids, J. Lond. Math. Soc., Volume 93 (2016) no. 2, pp. 143-158 | Zbl | MR

[2] Aka, Menny; Einsiedler, Manfred; Shapira, Uri Integer points on spheres and their orthogonal lattices, Invent. Math., Volume 206 (2016) no. 2, pp. 379-396 | Zbl | MR

[3] Benoist, Yves; Oh, Hee Effective equidistribution of S-integral points on symmetric varieties, Ann. Inst. Fourier, Volume 62 (2012) no. 5, pp. 1889-1942 | MR | DOI | Zbl | Numdam

[4] Borel, Armand; Harish-Chandra Arithmetic subgroups of algebraic groups, Ann. Math., Volume 75 (1962), pp. 485-535 | DOI | Zbl | MR

[5] Bryk, John; Silva, Cesar E. Measurable dynamics of simple p-adic polynomials, Am. Math. Mon., Volume 112 (2005) no. 3, pp. 212-232 | Zbl | MR | DOI

[6] Clozel, Laurent; Oh, Hee; Ullmo, Emmanuel Hecke operators and equidistribution of Hecke points, Invent. Math., Volume 144 (2001) no. 2, pp. 327-351 | Zbl | MR | DOI

[7] Duke, William Rational points on the sphere, Ramanujan J., Volume 7 (2003) no. 1, pp. 235-239 | Zbl | MR | DOI

[8] Duke, William An introduction to the Linnik problems, Equidistribution in number theory, an introduction (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 237, Springer, 2007, pp. 197-216 | Zbl | DOI | MR

[9] Einsiedler, Manfred; Lindenstrauss, Elon; Michel, Philippe; Venkatesh, Akshay Distribution of periodic torus orbits on homogeneous spaces, Duke Math. J., Volume 148 (2009) no. 1, pp. 119-174 | Zbl | MR

[10] Einsiedler, Manfred; Mozes, Shahar; Shah, Nimish; Shapira, Uri Equidistribution of primitive rational points on expanding horospheres, Compos. Math., Volume 152 (2016) no. 4, pp. 667-692 | Zbl | MR | DOI

[11] Einsiedler, Manfred; Rühr, René; Wirth, Philipp Distribution of shapes of orthogonal lattices, Ergodic Theory Dyn. Syst., Volume 39 (2019) no. 6, pp. 1531-1607 | DOI | Zbl | MR

[12] Einsiedler, Manfred; Ward, Thomas Ergodic theory (with a view towards number theory), Graduate Texts in Mathematics, 259, Springer, 2011 | DOI

[13] Eskin, Alex; McMullen, Curt Mixing, Counting and Equidistribution in Lie Groups, Duke Math. J., Volume 71 (1993) no. 1, pp. 181-209 | Zbl | MR

[14] Gelbart, Stephen; Jacquet, Hervé A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 4, pp. 471-542 | Numdam | MR | DOI | Zbl

[15] Goldman, Oscar; Iwahori, Nagayoshi The space of 𝔭-adic norms, Acta Math., Volume 109 (1963) no. 1, pp. 137-177 | DOI | MR

[16] Good, Anton On various means involving the Fourier coefficients of cusp forms, Math. Z., Volume 183 (1983) no. 1, pp. 95-129 | MR | Zbl | DOI

[17] Gorodnik, Alexander; Nevo, Amos Counting lattice points, J. Reine Angew. Math., Volume 663 (2012), pp. 127-176 | Zbl | MR

[18] Guilloux, Antonin Equidistribution in S-arithmetic and adelic spaces, Ann. Fac. Sci. Toulouse, Math., Volume 23 (2014) no. 5, pp. 1023-1048 | Zbl | Numdam | MR | DOI

[19] Horesh, Tal; Karasik, Yakov Horospherical coordinates of lattice points in hyperbolic space: effective counting and equidistribution (2016) (http://arxiv.org/abs/1612.08215)

[20] Horesh, Tal; Karasik, Yakov Equidistribution of primitive vectors, and the shortest solutions to their GCD equations (2019) (http://arxiv.org/abs/1903.01560)

[21] Horesh, Tal; Karasik, Yakov A practical guide to well roundedness (2020) (http://arxiv.org/abs/2011.12204)

[22] Kim, Henry H. Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 , J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 139-183 (with an appendix by D. Ramakrishnan, and an appendix co-authored by P. Sarnak) | MR

[23] Linnik, Yuriĭ V. Ergodic Properties of Algebraic Fields, Ergebnisse der Mathematik und ihrer Grenzgebiete, 45, Springer, 1968

[24] Marklof, Jens The asymptotic distribution of Frobenius numbers, Invent. Math., Volume 181 (2010) no. 1, pp. 179-207 | Zbl | MR | DOI

[25] Marklof, Jens; Vinogradov, Ilya Directions in Hyperbolic Lattices, J. Reine Angew. Math., Volume 740 (2018), pp. 161-186 | Zbl | MR | DOI

[26] Platonov, Vladimir P.; Rapinchuk, Andrei S. Algebraic groups and number theory, Russ. Math. Surv., Volume 47 (1992) no. 2, pp. 133-161 | Zbl | DOI

[27] Risager, Morten S.; Rudnick, Zeév On the statistics of the minimal solution of a linear Diophantine equation and uniform distribution of the real part of orbits in hyperbolic spaces, Spectral analysis in geometry and number theory (Contemporary Mathematics), Volume 484, American Mathematical Society, 2009, pp. 187-194 | MR | DOI

[28] Schmidt, Wolfgang M. The distribution of sub-lattices of Z m , Monatsh. Math., Volume 125 (1998) no. 1, pp. 37-81 | DOI

[29] Truelsen, Jimi L. Effective equidistribution of the real part of orbits on hyperbolic surfaces, Proc. Am. Math. Soc., Volume 141 (2013) no. 2, pp. 505-514 | Zbl | MR | DOI

Cité par Sources :