Monge–Ampère measures for toric metrics on abelian varieties
[Mesures de Monge-Ampère pour les métriques toriques sur les variétés abéliennes]
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2023), pp. 49-84

Toric metrics on a line bundle of an abelian variety A are the invariant metrics under the natural torus action coming from Raynaud’s uniformization theory. We compute here the associated Monge–Ampère measures for the restriction to any closed subvariety of A. This generalizes the computation of canonical measures done by the first author from canonical metrics to toric metrics and from discrete valuations to arbitrary non-archimedean fields.

Les métriques toriques sur un fibré en droites sur une variété abélienne A sont les métriques invariantes sous l’action naturelle du tore issue de la théorie de l’uniformisation de Raynaud. Nous calculons les mesures de Monge–Ampère associées pour les restrictions à toutes les sous-variétés fermées de A. Ceci généralise des travaux du premier auteur sur le calcul des mesures canoniques pour des valuations discrètes au cas des métriques toriques pour des corps non archimédiens arbitraires.

Publié le :
DOI : 10.5802/pmb.49
Classification : 14G40, 11G10, 14G22
Keywords: Berkovich analytic spaces, formal geometry, abelian varieties, canonical measures

Gubler, Walter 1 ; Stadlöder, Stefan 1

1 Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2023____49_0,
     author = {Gubler, Walter and Stadl\"oder, Stefan},
     title = {Monge{\textendash}Amp\`ere measures for toric metrics on abelian varieties},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {49--84},
     year = {2023},
     publisher = {Presses universitaires de Franche-Comt\'e},
     doi = {10.5802/pmb.49},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/pmb.49/}
}
TY  - JOUR
AU  - Gubler, Walter
AU  - Stadlöder, Stefan
TI  - Monge–Ampère measures for toric metrics on abelian varieties
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2023
SP  - 49
EP  - 84
PB  - Presses universitaires de Franche-Comté
UR  - https://www.numdam.org/articles/10.5802/pmb.49/
DO  - 10.5802/pmb.49
LA  - en
ID  - PMB_2023____49_0
ER  - 
%0 Journal Article
%A Gubler, Walter
%A Stadlöder, Stefan
%T Monge–Ampère measures for toric metrics on abelian varieties
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2023
%P 49-84
%I Presses universitaires de Franche-Comté
%U https://www.numdam.org/articles/10.5802/pmb.49/
%R 10.5802/pmb.49
%G en
%F PMB_2023____49_0
Gubler, Walter; Stadlöder, Stefan. Monge–Ampère measures for toric metrics on abelian varieties. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2023), pp. 49-84. doi: 10.5802/pmb.49

[1] Adiprasito, Karim; Liu, Gaku; Pak, Igor; Temkin, Michael Log smoothness and polystability over valuation rings (2019) (http://arxiv.org/abs/1806.09168)

[2] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990, x+169 pages | MR

[3] Berkovich, Vladimir G. Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 5-161 | DOI | Zbl | Numdam | MR

[4] Berkovich, Vladimir G. Smooth p-adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | Zbl | MR | DOI

[5] Bombieri, Enrico; Gubler, Walter Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006, xvi+652 pages | MR | DOI

[6] Bosch, Siegfried Lectures on formal and rigid geometry, Lecture Notes in Mathematics, 2105, Springer, 2014, viii+254 pages | DOI

[7] Bosch, Siegfried; Lütkebohmert, Werner Degenerating abelian varieties, Topology, Volume 30 (1991) no. 4, pp. 653-698 | Zbl | MR | DOI

[8] Burgos Gil, José Ignacio; Gubler, Walter; Jell, Philipp; Künnemann, Klaus A comparison of positivity in complex and tropical toric geometry, Math. Z., Volume 299 (2021) no. 3-4, pp. 1199-1255 | Zbl | MR | DOI

[9] Burgos Gil, José Ignacio; Gubler, Walter; Jell, Philipp; Künnemann, Klaus Pluripotential theory for tropical toric varieties and non-archimedean Monge-Ampère equations (2021) (https://arxiv.org/abs/2102.07392)

[10] Burgos Gil, José Ignacio; Philippon, Patrice; Sombra, Martín Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, 360, Société Mathématique de France, 2014, vi+222 pages | Numdam | Zbl | MR

[11] Cantat, Serge; Gao, Ziyang; Habegger, Philipp; Xie, Junyi The geometric Bogomolov conjecture, Duke Math. J., Volume 170 (2021) no. 2, pp. 247-277 | Zbl | MR | DOI

[12] Chambert-Loir, Antoine Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl | MR | DOI

[13] Chambert-Loir, Antoine; Ducros, Antoine Formes différentielles réelles et courants sur les espaces de Berkovich (2012) (http://arxiv.org/abs/1204.6277)

[14] Ducros, Antoine Espaces de Berkovich, polytopes, squelettes et théorie des modèles, Confluentes Math., Volume 4 (2012) no. 4, 1250007, 57 pages | Zbl | MR | DOI

[15] Ducros, Antoine Families of Berkovich spaces, Astérisque, 400, Société Mathématique de France, 2018, vii+262 pages | Zbl

[16] Faltings, Gerd Diophantine approximation on abelian varieties, Ann. Math., Volume 133 (1991) no. 3, pp. 549-576 | Zbl | MR | DOI

[17] Foster, Tyler; Rabinoff, Joseph; Shokrieh, Farbod; Soto, Alejandro Non-Archimedean and tropical theta functions, Math. Ann., Volume 372 (2018) no. 3-4, pp. 891-914 | Zbl | MR | DOI

[18] Fulton, William Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993, xii+157 pages | DOI | MR

[19] Gao, Ziyang; Habegger, Philipp Heights in families of abelian varieties and the geometric Bogomolov conjecture, Ann. Math., Volume 189 (2019) no. 2, pp. 527-604 | Zbl | MR | DOI

[20] Gubler, Walter Local heights of subvarieties over non-Archimedean fields, J. Reine Angew. Math., Volume 498 (1998), pp. 61-113 | Zbl | MR | DOI

[21] Gubler, Walter The Bogomolov conjecture for totally degenerate abelian varieties, Invent. Math., Volume 169 (2007) no. 2, pp. 377-400 | Zbl | MR | DOI

[22] Gubler, Walter Tropical varieties for non-Archimedean analytic spaces, Invent. Math., Volume 169 (2007) no. 2, pp. 321-376 | Zbl | MR | DOI

[23] Gubler, Walter Non-Archimedean canonical measures on abelian varieties, Compos. Math., Volume 146 (2010) no. 3, pp. 683-730 | Zbl | MR | DOI

[24] Gubler, Walter A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry (Contemporary Mathematics), Volume 589, American Mathematical Society, 2013, pp. 125-189 | Zbl | MR | DOI

[25] Gubler, Walter; Jell, Philipp; Rabinoff, Joseph Forms on Berkovich spaces based on harmonic tropicalizations (2021) (https://arxiv.org/abs/1909.12633)

[26] Gubler, Walter; Künnemann, Klaus A tropical approach to nonarchimedean Arakelov geometry, Algebra Number Theory, Volume 11 (2017) no. 1, pp. 77-180 | Zbl | MR | DOI

[27] Gubler, Walter; Martin, Florent On Zhang’s semipositive metrics, Doc. Math., Volume 24 (2019), pp. 331-372 | Zbl | DOI | MR

[28] Hrushovski, Ehud The Manin-Mumford conjecture and the model theory of difference fields, Ann. Pure Appl. Logic, Volume 112 (2001) no. 1, pp. 43-115 | Zbl | MR | DOI

[29] Lagerberg, Aron Super currents and tropical geometry, Math. Z., Volume 270 (2012) no. 3-4, pp. 1011-1050 | Zbl | MR | DOI

[30] Mikhalkin, Grigory; Zharkov, Ilia Tropical curves, their Jacobians and theta functions, Curves and abelian varieties (Contemporary Mathematics), Volume 465, American Mathematical Society, 2008, pp. 203-230 | Zbl | MR | DOI

[31] Pink, Richard; Roessler, Damian On ψ-invariant subvarieties of semiabelian varieties and the Manin-Mumford conjecture, J. Algebr. Geom., Volume 13 (2004) no. 4, pp. 771-798 | Zbl | MR | DOI

[32] Raynaud, Michel Variétés abéliennes et géométrie rigide, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, 1971, pp. 473-477 | Zbl | MR

[33] Raynaud, Michel Sous-variétés d’une variété abélienne et points de torsion, Arithmetic and geometry, Vol. I (Progress in Mathematics), Volume 35, Birkhäuser, 1983, pp. 327-352 | Zbl | DOI | MR

[34] Stadlöder, Stefan Canonical measures of subvarieties of abelian varieties, Ph. D. Thesis, Universität Regensburg (2022) (http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bvb:355-epub-526463)

[35] Szpiro, Lucien; Ullmo, Emmanuel; Zhang, Shou-Wu Équirépartition des petits points, Invent. Math., Volume 127 (1997) no. 2, pp. 337-347 | Zbl | MR | DOI

[36] Ullmo, Emmanuel Positivité et discrétion des points algébriques des courbes, Ann. Math., Volume 147 (1998) no. 1, pp. 167-179 | Zbl | MR | DOI

[37] Xie, Junyi; Yuan, Xinyi Geometric Bogomolov conjecture in arbitrary characteristics (2021) (http://arxiv.org/abs/2108.09722)

[38] Yuan, Xinyi Big line bundles over arithmetic varieties, Invent. Math., Volume 173 (2008) no. 3, pp. 603-649 | Zbl | MR | DOI

[39] Zhang, Shou-Wu Equidistribution of small points on abelian varieties, Ann. Math., Volume 147 (1998) no. 1, pp. 159-165 | Zbl | MR | DOI

Cité par Sources :