Families of eulerian functions involved in regularization of divergent polyzetas
[Familles de fonctions eulériennes impliquées dans la régularisation de polyzêtas divergents]
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2023), pp. 5-28

Extending the Eulerian functions, we study their relationship with zeta function of several variables. In particular, starting with Weierstrass factorization theorem (and Newton–Girard identity) for the complex Gamma function, we are interested in the ratios of ζ(2k)/π 2k and their multiindexed generalization, we obtain an analogue situation and draw some consequences about a structure of the algebra of polyzetas values, by means of some combinatorics of words and noncommutative rational series. The same frameworks also allow to study the independence of a family of eulerian functions.

En généralisant les fonctions euleriennes, nous étudions leurs relations avec la fonction zêta en plusieurs variables. En particulier, à partir du théorème de factorisation de Weierstrass (et l’identité de Newton-Girard) pour la fonction Gamma complexe, nous nous intéressons aux rapports ζ(2k)/π 2k et leurs généralisations. Nous obtenons une situation analogue et nous tirerons quelques conséquences sur une structure de l’algèbre des valeurs polyzêtas, au moyen de la combinatoire des mots et des séries rationnelles en variables non commutatifs. Le même cadre de travail permet également d’étudier l’indépendance d’une famille de fonctions euleriennes.

Publié le :
DOI : 10.5802/pmb.47
Classification : 05E16, 11M32, 16T05, 20F10, 33F10, 44A20
Keywords: Eulerian functions, zeta function, Gamma function

Bui, V. C. 1 ; Hoang Ngoc Minh, V. 2 ; Ngo, Q. H. 3 ; Nguyen Dinh, V. 4

1 Hue University, 77, Nguyen Hue, Hue, Viet Nam,
2 University of Lille, 1 Place Déliot, 59024 Lille, France, LIPN - UMR 7030, CNRS, 93430 Villetaneuse, France
3 Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam,
4 LIPN-UMR 7030, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France,
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2023____5_0,
     author = {Bui, V. C. and Hoang Ngoc Minh, V. and Ngo, Q. H. and Nguyen Dinh, V.},
     title = {Families of eulerian functions involved in regularization of divergent polyzetas},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {5--28},
     year = {2023},
     publisher = {Presses universitaires de Franche-Comt\'e},
     doi = {10.5802/pmb.47},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/pmb.47/}
}
TY  - JOUR
AU  - Bui, V. C.
AU  - Hoang Ngoc Minh, V.
AU  - Ngo, Q. H.
AU  - Nguyen Dinh, V.
TI  - Families of eulerian functions involved in regularization of divergent polyzetas
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2023
SP  - 5
EP  - 28
PB  - Presses universitaires de Franche-Comté
UR  - https://www.numdam.org/articles/10.5802/pmb.47/
DO  - 10.5802/pmb.47
LA  - en
ID  - PMB_2023____5_0
ER  - 
%0 Journal Article
%A Bui, V. C.
%A Hoang Ngoc Minh, V.
%A Ngo, Q. H.
%A Nguyen Dinh, V.
%T Families of eulerian functions involved in regularization of divergent polyzetas
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2023
%P 5-28
%I Presses universitaires de Franche-Comté
%U https://www.numdam.org/articles/10.5802/pmb.47/
%R 10.5802/pmb.47
%G en
%F PMB_2023____5_0
Bui, V. C.; Hoang Ngoc Minh, V.; Ngo, Q. H.; Nguyen Dinh, V. Families of eulerian functions involved in regularization of divergent polyzetas. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2023), pp. 5-28. doi: 10.5802/pmb.47

[1] Berstel, Jean; Reutenauer, Christophe Rational series and their languages, EATCS Monographs on Theoretical Computer Science, 12, Springer, 1988 | Zbl

[2] Bui, V. C.; Duchamp, Gérard H. E.; Ngô, Q. H.; Hoang Ngoc Minh, Vincel A local Theory of Domains and its (Noncommutative) Symbolic Counterpart, Math. Comput. Sci., Volume 17 (2023), 4 | DOI

[3] Costermans, Christian; Hoang Ngoc Minh, Vincel Noncommutative algebra, multiple harmonic sums and applications in discrete probability, J. Symb. Comput., Volume 44 (2009) no. 7, pp. 801-817 | Zbl | MR | DOI

[4] Deneufchâtel, Matthieu; Duchamp, Gérard H. E.; Hoang Ngoc Minh, Vincel; Solomon, Allan I. Independence of hyperlogarithms over function fields via algebraic combinatorics, Algebraic informatics, CAI 2011 (Linz, 2011) (Lecture Notes in Computer Science), Volume 6742, Springer, 2011, pp. 127-139 | Zbl | MR

[5] Dieudonné, Jean Infinitesimal calculus, Houghton Mifflin, 1971

[6] Duchamp, Gérard H. E.; Hoang Ngoc Minh, Vincel; Hoan, Ngo Quoc Kleene stars of the plane, polylogarithms and symmetries, Theor. Comput. Sci., Volume 800 (2019), pp. 52-72 | MR | Zbl | DOI

[7] Duchamp, Gérard H. E.; Hoang Ngoc Minh, Vincel; Nguyen Dinh, Vu Towards a noncommutative Picard-Vessiot theory (2020) (https://arxiv.org/abs/2008.10872)

[8] Duchamp, Gérard H. E.; Hoang Ngoc Minh, Vincel; Penson, Karol A. About Some Drinfel’d Associators, Computer algebra in scientific computing (Lille, 2018) (Lecture Notes in Computer Science), Volume 11077, Springer, 2018 | Zbl | MR

[9] Goncharov, Alexander B. Multiple polylogarithms and mixed Tate motives (2001) (https://arxiv.org/abs/math/0103059v4)

[10] Hoang Ngoc Minh, Vincel Summations of Polylogarithms via Evaluation Transform, Math. Comput. Simul., Volume 42 (1996) no. 4-6, pp. 707-728 | Zbl | DOI | MR

[11] Hoang Ngoc Minh, Vincel Differential Galois groups and noncommutative generating series of polylogarithms, Automata, Combinatorics and Geometry (Systemics, Cybernetics and Informatics), 2003

[12] Hoang Ngoc Minh, Vincel Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series, Proceedings of 4 th International Conference on Words (TUCS General Publication), Volume 27, Turku Centre for Computer Science, 2003, pp. 232-250 | MR | Zbl

[13] Hoang Ngoc Minh, Vincel On the solutions of universal differential equation with three singularities, Confluentes Math., Volume 11 (2019) no. 2, pp. 25-64 | MR | Zbl | Numdam | DOI

[14] Lascoux, Alain Fonctions symétriques, Sémin. Lothar. Comb., Volume 8 (1983), B08f, 16 pages | Zbl

[15] Legendre, Adrien-Marie Exercices de calcul intégral sur divers ordres de transcendantes et sur les quadratures, 1, Courcier, 1811

[16] van der Put, Marius; Singer, Michael F. Galois Theory of Linear Differential Equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer, 2003 | DOI

[17] Reutenauer, Christophe Free Lie Algebras, London Mathematical Society Monographs. New Series, 7, Clarendon Press, 1993

[18] Zhao, Jianqiang Analytic continuation of multiple zeta functions, Proc. Am. Math. Soc., Volume 128 (1999) no. 5, pp. 1275-1283 | MR | DOI | Zbl

Cité par Sources :