Quadratic error bound of the smoothed gap and the restarted averaged primal-dual hybrid gradient
Open Journal of Mathematical Optimization, Tome 4 (2023), article no. 6, 34 p.

We study the linear convergence of the primal-dual hybrid gradient method. After a review of current analyses, we show that they do not explain properly the behavior of the algorithm, even on the most simple problems. We thus introduce the quadratic error bound of the smoothed gap, a new regularity assumption that holds for a wide class of optimization problems. Equipped with this tool, we manage to prove tighter convergence rates. Then, we show that averaging and restarting the primal-dual hybrid gradient allows us to leverage better the regularity constant. Numerical experiments on linear and quadratic programs, ridge regression and image denoising illustrate the findings of the paper.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ojmo.26
Keywords: linear convergence, primal-dual algorithm, error bound, restart

Fercoq, Olivier 1

1 LTCI, Télécom Paris, Institut Polytechnique de Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{OJMO_2023__4__A6_0,
     author = {Fercoq, Olivier},
     title = {Quadratic error bound of the smoothed gap  and the restarted averaged primal-dual hybrid gradient},
     journal = {Open Journal of Mathematical Optimization},
     eid = {6},
     pages = {1--34},
     year = {2023},
     publisher = {Universit\'e de Montpellier},
     volume = {4},
     doi = {10.5802/ojmo.26},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ojmo.26/}
}
TY  - JOUR
AU  - Fercoq, Olivier
TI  - Quadratic error bound of the smoothed gap  and the restarted averaged primal-dual hybrid gradient
JO  - Open Journal of Mathematical Optimization
PY  - 2023
SP  - 1
EP  - 34
VL  - 4
PB  - Université de Montpellier
UR  - https://www.numdam.org/articles/10.5802/ojmo.26/
DO  - 10.5802/ojmo.26
LA  - en
ID  - OJMO_2023__4__A6_0
ER  - 
%0 Journal Article
%A Fercoq, Olivier
%T Quadratic error bound of the smoothed gap  and the restarted averaged primal-dual hybrid gradient
%J Open Journal of Mathematical Optimization
%D 2023
%P 1-34
%V 4
%I Université de Montpellier
%U https://www.numdam.org/articles/10.5802/ojmo.26/
%R 10.5802/ojmo.26
%G en
%F OJMO_2023__4__A6_0
Fercoq, Olivier. Quadratic error bound of the smoothed gap  and the restarted averaged primal-dual hybrid gradient. Open Journal of Mathematical Optimization, Tome 4 (2023), article  no. 6, 34 p.. doi: 10.5802/ojmo.26

[1] Alacaoglu, Ahmet; Fercoq, Olivier; Cevher, Volkan On the convergence of stochastic primal-dual hybrid gradient (2019) (https://arxiv.org/abs/1911.00799)

[2] Alghunaim, Sulaiman A.; Sayed, Ali H. Linear convergence of primal–dual gradient methods and their performance in distributed optimization, Automatica, Volume 117 (2020), 109003 | MR | Zbl

[3] Applegate, David; Hinder, Oliver; Lu, Haihao; Lubin, Miles Faster First-Order Primal-Dual Methods for Linear Programming using Restarts and Sharpness (2021) (https://arxiv.org/abs/2105.12715)

[4] Bauschke, Heinz H.; Combettes, Patrick L. et al. Convex analysis and monotone operator theory in Hilbert spaces, 408, Springer, 2011 | DOI

[5] Bolte, Jérôme; Nguyen, Trong Phong; Peypouquet, Juan; Suter, Bruce W. From error bounds to the complexity of first-order descent methods for convex functions, Math. Program., Volume 165 (2017) no. 2, pp. 471-507 | DOI | MR | Zbl

[6] Chambolle, Antonin; Pock, Thomas A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., Volume 40 (2011) no. 1, pp. 120-145 | DOI | MR | Zbl

[7] Chang, Chih-Chung; Lin, Chih-Jen LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst. Technol., Volume 2 (2011) no. 3, pp. 1-27 | DOI

[8] Condat, Laurent A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms, J. Optim. Theory Appl., Volume 158 (2013) no. 2, pp. 460-479 | DOI | MR | Zbl

[9] Condat, Laurent; Kitahara, Daichi; Contreras, Andrés; Hirabayashi, Akira Proximal splitting algorithms: A tour of recent advances, with new twists (2019) (https://arxiv.org/abs/1912.00137)

[10] Davis, Damek; Yin, Wotao Convergence rate analysis of several splitting schemes, Splitting methods in communication, imaging, science, and engineering (Scientific Computation), Springer, 2016, pp. 115-163 | DOI | Zbl

[11] Dontchev, Asen L.; Rockafellar, R. Tyrrell Implicit functions and solution mappings. A view from variational analysis, Springer Monographs in Mathematics, Springer, 2009 | DOI

[12] Drusvyatskiy, Dmitriy; Lewis, Adrian S. Error bounds, quadratic growth, and linear convergence of proximal methods, Math. Oper. Res., Volume 43 (2018) no. 3, pp. 919-948 | DOI | MR | Zbl

[13] Du, Simon S.; Hu, Wei Linear convergence of the primal-dual gradient method for convex-concave saddle point problems without strong convexity, The 22nd International Conference on Artificial Intelligence and Statistics, PMLR (2019), pp. 196-205

[14] Fercoq, Olivier; Bianchi, Pascal A coordinate-descent primal-dual algorithm with large step size and possibly nonseparable functions, SIAM J. Optim., Volume 29 (2019) no. 1, pp. 100-134 | DOI | MR | Zbl

[15] Fercoq, Olivier; Qu, Zheng Adaptive restart of accelerated gradient methods under local quadratic growth condition, IMA J. Numer. Anal., Volume 39 (2019) no. 4, pp. 2069-2095 | Zbl | DOI | MR

[16] Fercoq, Olivier; Qu, Zheng Restarting the accelerated coordinate descent method with a rough strong convexity estimate, Comput. Optim. Appl., Volume 75 (2020) no. 1, pp. 63-91 | DOI | MR | Zbl

[17] Gabay, Daniel; Mercier, Bertrand A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., Volume 2 (1976) no. 1, pp. 17-40 | DOI | Zbl

[18] Hoffman, Alan J. On Approximate Solutions of Systems of Linear Inequalities, Journal of Research of the National Bureau of Standards, Volume 49 (1952) no. 4, p. 263 | DOI | MR

[19] Jiang, Fan; Wu, Zhongming; Cai, Xingju; Zhang, Hongchao Unified linear convergence of first-order primal-dual algorithms for saddle point problems, Optim. Lett., Volume 16 (2022) no. 6, pp. 1675-1700 | DOI | MR | Zbl

[20] Kovalev, Dmitry; Salim, Adil; Richtárik, Peter Optimal and practical algorithms for smooth and strongly convex decentralized optimization, Adv. Neural Inf. Process. Syst., Volume 33 (2020)

[21] Latafat, Puya; Freris, Nikolaos M.; Patrinos, Panagiotis A new randomized block-coordinate primal-dual proximal algorithm for distributed optimization, IEEE Trans. Autom. Control, Volume 64 (2019) no. 10, pp. 4050-4065 | DOI | MR | Zbl

[22] Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel Convergence rates with inexact non-expansive operators, Math. Program., Volume 159 (2016) no. 1-2, pp. 403-434 | DOI | MR | Zbl

[23] Lin, Qihang; Ma, Runchao; Nadarajah, Selvaprabu; Soheili, Negar First-Order Methods for Convex Constrained Optimization under Error Bound Conditions with Unknown Growth Parameters (2020) (https://arxiv.org/abs/2010.15267)

[24] Lu, Meng; Qu, Zheng An adaptive proximal point algorithm framework and application to large-scale optimization (2020) (https://arxiv.org/abs/2008.08784)

[25] Nesterov, Yurii Smooth minimization of non-smooth functions, Math. Program., Volume 103 (2005) no. 1, pp. 127-152 | DOI | MR | Zbl

[26] Nesterov, Yurii et al. Lectures on convex optimization, 137, Springer, 2018 | DOI

[27] Ouyang, Yuyuan; Xu, Yangyang Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems, Math. Program., Volume 185 (2021) no. 1-2, pp. 1-35 | DOI | MR | Zbl

[28] Rockafellar, R. Tyrrell; Wets, Roger J.-B. Variational analysis, 317, Springer, 2009

[29] Salim, Adil; Condat, Laurent; Mishchenko, Konstantin; Richtárik, Peter Dualize, split, randomize: Toward fast nonsmooth optimization algorithms, J. Optim. Theory Appl., Volume 195 (2022) no. 1, pp. 102-130 | DOI | MR | Zbl

[30] Tran-Dinh, Quoc; Fercoq, Olivier; Cevher, Volkan A smooth primal-dual optimization framework for nonsmooth composite convex minimization, SIAM J. Optim., Volume 28 (2018) no. 1, pp. 96-134 | DOI | MR | Zbl

[31] Vũ, Bang Công A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math., Volume 38 (2013) no. 3, pp. 667-681 | MR | Zbl

[32] Zhu, Daoli; Zhao, Lei Linear Convergence of Randomized Primal-Dual Coordinate Method for Large-scale Linear Constrained Convex Programming, International Conference on Machine Learning, PMLR (2020), pp. 11619-11628

Cité par Sources :