Measure framework for the pure selection equation: global well posedness and numerical investigations
MathematicS In Action, Maths Bio, Tome 12 (2023) no. 1, pp. 155-173

We study the classic pure selection integrodifferential equation, stemming from adaptative dynamics, in a measure framework by mean of duality approach. After providing a well posedness result under fairly general assumptions, we focus on the asymptotic behaviour of various cases, illustrated by some numerical simulations.

Publié le :
DOI : 10.5802/msia.36
Classification : 45J05, 45M15, 65R20, 92D15, 92D40
Keywords: population dynamics, selection model, measure solutions, semigroup, asymptotic behaviour, simulations

Martin, Hugo 1

1 IRMAR, Université de Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France and INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2023__12_1_155_0,
     author = {Martin, Hugo},
     title = {Measure framework for the pure selection equation: global well posedness and numerical investigations},
     journal = {MathematicS In Action},
     pages = {155--173},
     year = {2023},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {12},
     number = {1},
     doi = {10.5802/msia.36},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/msia.36/}
}
TY  - JOUR
AU  - Martin, Hugo
TI  - Measure framework for the pure selection equation: global well posedness and numerical investigations
JO  - MathematicS In Action
PY  - 2023
SP  - 155
EP  - 173
VL  - 12
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://www.numdam.org/articles/10.5802/msia.36/
DO  - 10.5802/msia.36
LA  - en
ID  - MSIA_2023__12_1_155_0
ER  - 
%0 Journal Article
%A Martin, Hugo
%T Measure framework for the pure selection equation: global well posedness and numerical investigations
%J MathematicS In Action
%D 2023
%P 155-173
%V 12
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://www.numdam.org/articles/10.5802/msia.36/
%R 10.5802/msia.36
%G en
%F MSIA_2023__12_1_155_0
Martin, Hugo. Measure framework for the pure selection equation: global well posedness and numerical investigations. MathematicS In Action, Maths Bio, Tome 12 (2023) no. 1, pp. 155-173. doi: 10.5802/msia.36

[1] Aafif, Amal; Lin, Juan Selection-mutation process of RNA viruses, Phys. Rev. E, Volume 57 (1998) no. 2, pp. 2471-2474 | DOI

[2] Ackleh, Azmy S.; Cleveland, John; Thieme, Horst R. Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces, J. Differ. Equations, Volume 261 (2016) no. 2, pp. 1472-1505 | Zbl | MR | DOI

[3] Ackleh, Azmy S.; Fitzpatrick, Ben G.; Thieme, Horst R. Rate distributions and survival of the fittest: a formulation on the space of measures, Discrete Contin. Dyn. Syst., Ser. B, Volume 5 (2005) no. 4, pp. 917-928 | Zbl | MR | DOI

[4] Ackleh, Azmy S.; Marshall, David F.; Heatherly, Henry E.; Fitzpatrick, Ben G. Survival of the fittest in a generalized logistic model, Math. Models Methods Appl. Sci., Volume 09 (1999) no. 09, pp. 1379-1391 | Zbl | MR | DOI

[5] Ackleh, Azmy S.; Saintier, Nicolas Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures, Discrete Contin. Dyn. Syst., Ser. B, Volume 26 (2021) no. 3, pp. 1469-1497 | Zbl | MR | DOI

[6] Ardaševa, Aleksandra; Gatenby, Robert A.; Anderson, Alexander R. A.; Byrne, Helen M.; Maini, Philip K.; Lorenzi, Tommaso Evolutionary dynamics of competing phenotype-structured populations in periodically fluctuating environments, J. Math. Biol., Volume 80 (2019) no. 3, pp. 775-807 | Zbl | MR | DOI

[7] Bonnefon, Olivier; Coville, Jérôme; Legendre, Guillaume Concentration phenomenon in some non-local equation, Discrete Contin. Dyn. Syst., Ser. B, Volume 22 (2017) no. 3, pp. 763-781 | Zbl | MR | DOI

[8] Burger, R. Mathematical Theory of Selection, John Wiley & Sons, 2000, 420 pages https://www.ebook.de/...

[9] Busse, Jan-Erik; Cuadrado, Sílvia; Marciniak-Czochra, Anna Local asymptotic stability of a system of integro-differential equations describing clonal evolution of a self-renewing cell population under mutation, J. Math. Biol., Volume 84 (2022), 10 | Zbl | MR | DOI

[10] Busse, Jan-Erik; Gwiazda, Piotr; Marciniak-Czochra, Anna Mass concentration in a nonlocal model of clonal selection, J. Math. Biol., Volume 73 (2016) no. 4, pp. 1001-1033 | Zbl | MR | DOI

[11] Calsina, Àngel; Cuadrado, Sílvia Asymptotic stability of equilibria of selection-mutation equations, J. Math. Biol., Volume 54 (2006) no. 4, pp. 489-511 | Zbl | MR | DOI

[12] Calvez, Vincent; Iglesias, Susely Figueroa; Hivert, Hélène; Méléard, Sylvie; Melnykova, Anna; Nordmann, Samuel Horizontal gene transfer: numerical comparison between stochastic and deterministic approaches, ESAIM, Proc. Surv., Volume 67 (2020), pp. 135-160 | Zbl | MR | DOI

[13] Cañizo, José A.; Carrillo, José A.; Cuadrado, Sílvia Measure Solutions for Some Models in Population Dynamics, Acta Appl. Math., Volume 123 (2012) no. 1, pp. 141-156 | Zbl | MR | DOI

[14] Carrère, Cécile; Nadin, Grégoire Influence of mutations in phenotypically-structured populations in time periodic environment, Discrete Contin. Dyn. Syst., Ser. B, Volume 25 (2020) no. 9, pp. 3609-3630 | Zbl | MR | DOI

[15] Champagnat, Nicolas A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stochastic Processes Appl., Volume 116 (2006) no. 8, pp. 1127-1160 | Zbl | MR | DOI

[16] Champagnat, Nicolas; Ferrière, Régis; Ben Arous, Gerard The Canonical Equation of Adaptive Dynamics: A Mathematical View, Selection, Volume 2 (2002) no. 1-2, pp. 73-83 | DOI

[17] Champagnat, Nicolas; Ferrière, Régis; Méléard, Sylvie From Individual Stochastic Processes to Macroscopic Models in Adaptive Evolution, Stoch. Models, Volume 24 (2008), pp. 2-44 | Zbl | MR | DOI

[18] Champagnat, Nicolas; Jabin, Pierre-Emmanuel; Méléard, Sylvie Adaptation in a stochastic multi-resources chemostat model, J. Math. Pures Appl., Volume 101 (2014) no. 6, pp. 755-788 | Zbl | MR | DOI

[19] Champagnat, Nicolas; Jabin, Pierre-Emmanuel; Raoul, Gaël Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1267-1272 | Zbl | Numdam | MR | DOI

[20] Champagnat, Nicolas; Méléard, Sylvie Polymorphic evolution sequence and evolutionary branching, Probab. Theory Relat. Fields, Volume 151 (2010) no. 1-2, pp. 45-94 | Zbl | MR | DOI

[21] Cleveland, John Evolutionary game theory on measure space, Ph. D. Thesis, Universityof Louisiana at Lafayette (2009) | MR

[22] Cooney, Daniel B.; Mori, Yoichiro Long-Time Behavior of a PDE Replicator Equation for Multilevel Selection in Group-Structured Populations, J. Math. Biol., Volume 85 (2022), 12 | Zbl | MR

[23] Coquille, Loren; Kraut, Anna; Smadi, Charline Stochastic individual-based models with power law mutation rate on a general finite trait space, Electron. J. Probab., Volume 26 (2021), 123, 37 pages | Zbl | MR | DOI

[24] Costa, Manon; Etchegaray, Christèle; Mirrahimi, Sepideh Survival criterion for a population subject to selection and mutations - Application to temporally piecewise constant environments, Nonlinear Anal., Real World Appl., Volume 59 (2021), 103239 | Zbl | MR | DOI

[25] Cressman, Ross; Hofbauer, Josef Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics, Theor. Popul. Biol., Volume 67 (2005) no. 1, pp. 47-59 | Zbl | DOI

[26] Desvillettes, Laurent; Jabin, Pierre-Emmanuel; Mischler, Stéphane; Raoul, Gaël On selection dynamics for continuous structured populations, Commun. Math. Sci., Volume 6 (2008) no. 3, pp. 729-747 | MR | Zbl | DOI

[27] Dieckmann, Ulf; Law, Richard The dynamical theory of coevolution: a derivation from stochastic ecological processes, J. Math. Biol., Volume 34 (1996) no. 5-6, pp. 579-612 | Zbl | MR | DOI

[28] Düll, Christian; Gwiazda, Piotr; Marciniak-Czochra, Anna; Skrzeczkowski, Jakub Spaces of Measures and their Applications to Structured Population Models, Cambridge University Press, 2021 | DOI

[29] Ferrière, Régis; Bronstein, Judith L.; Rinaldi, Sergio; Law, Richard; Gauduchon, Mathias Cheating and the evolutionary stability of mutualisms, Proc. R. Soc. Lond., Ser. B, Volume 269 (2002) no. 1493, pp. 773-780 | DOI

[30] Hirsch, Morris W. Systems of Differential Equations Which Are Competitive or Cooperative: I. Limit Sets, SIAM J. Math. Anal., Volume 13 (1982) no. 2, pp. 167-179 | Zbl | MR | DOI

[31] Hirsch, Morris W. Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere, SIAM J. Math. Anal., Volume 16 (1985) no. 3, pp. 423-439 | Zbl | MR | DOI

[32] Hirsch, Morris W. Systems of differential equations which are competitive or cooperative: III. Competing species, Nonlinearity, Volume 1 (1988) no. 1, pp. 51-71 | Zbl | MR | DOI

[33] Jabin, Pierre-Emmanuel Small populations corrections for selection-mutation models, Netw. Heterog. Media, Volume 7 (2012) no. 4, pp. 805-836 | Zbl | MR | DOI

[34] Jabin, Pierre-Emmanuel; Liu, Hailiang On a non-local selection–mutation model with a gradient flow structure, Nonlinearity, Volume 30 (2017) no. 11, pp. 4220-4238 | Zbl | MR | DOI

[35] Jabin, Pierre-Emmanuel; Raoul, Gaël On selection dynamics for competitive interactions, J. Math. Biol., Volume 63 (2010) no. 3, pp. 493-517 | Zbl | MR | DOI

[36] Jabin, Pierre-Emmanuel; Schram, Raymond Strother Selection-Mutation dynamics with spatial dependence (2016) (https://arxiv.org/abs/1601.04553)

[37] Kraut, Anna; Bovier, Anton From adaptive dynamics to adaptive walks, J. Math. Biol., Volume 79 (2019) no. 5, pp. 1699-1747 | Zbl | MR | DOI

[38] Lorenzi, Tommaso; Macfarlane, Fiona R.; Villa, Chiara Discrete and continuum models for the evolutionary and spatial dynamics of cancer: a very short introduction through two case studies, Trends in Biomathematics: Modeling Cells, Flows, Epidemics, and the Environment: Selected Works from the BIOMAT Consortium Lectures, Szeged, Hungary, 2019 (Mondaini, Rubem P., ed.), Springer, 2020, pp. 359-380 | Zbl | DOI

[39] Lorenzi, Tommaso; Pouchol, Camille Asymptotic analysis of selection-mutation models in the presence of multiple fitness peaks, Nonlinearity, Volume 33 (2020) no. 11, pp. 5791-5816 | Zbl | MR | DOI

[40] May, Robert M.; Leonard, Warren J. Nonlinear Aspects of Competition Between Three Species, SIAM J. Appl. Math., Volume 29 (1975) no. 2, pp. 243-253 | Zbl | MR | DOI

[41] Perthame, Benoît Transport Equations in Biology, Birkhäuser, 2007, ix+198 pages https://www.ebook.de/... | Zbl

[42] Pouchol, Camille; Trélat, Emmanuel Global stability with selection in integro-differential Lotka-Volterra systems modelling trait-structured populations, J. Biol. Dyn., Volume 12 (2018) no. 1, pp. 872-893 | Zbl | MR | DOI

[43] Smale, Steve On the differential equations of species in competition, J. Math. Biol., Volume 3 (1976) no. 1, pp. 5-7 | MR | DOI

[44] Villa, Chiara; Chaplain, Mark A. J.; Lorenzi, Tommaso Evolutionary Dynamics in Vascularised Tumours under Chemotherapy: Mathematical Modelling, Asymptotic Analysis and Numerical Simulations, Vietnam J. Math., Volume 49 (2021), pp. 143-167 | Zbl | MR | DOI

Cité par Sources :