The Contact Process with switching
MathematicS In Action, Maths Bio, Tome 12 (2023) no. 1, pp. 135-154

In this paper, we introduce a type switching mechanism for the Contact Process. That is, we allow the individual particles/sites to switch between two (or more) types independently of one another, and the different types may exhibit specific infection and recovery dynamics. Such type switches can e.g. be motivated from biology, where “phenotypic switching” is common among micro-organisms. Our framework includes as special cases systems with switches between “active” and “dormant” states (the Contact Process with dormancy, CPD), and the Contact Process in a randomly evolving environment (CPREE) introduced by Broman (2007). The “standard” multi-type Contact Process (without type-switching) can also be recovered as a limiting case.

After constructing the process from a graphical representation, we first establish basic properties that are mostly analogous to the classical Contact Process. We then provide couplings between several variants of the system, obtaining sufficient conditions for the existence of a phase transition. Further, we investigate the effect of the switching parameters on the critical value of the system by providing rigorous bounds obtained from the coupling arguments as well as numerical and heuristic results. Finally, we investigate scaling limits for the process as the switching parameters tend to 0 (slow switching regime) resp.  (fast switching regime). We conclude with a brief discussion of further model variants and questions for future research.

Publié le :
DOI : 10.5802/msia.35
Classification : 60K35, 92D25, 92D30
Keywords: Contact Process, Coupling, Dormancy, Random environment, Switching

Blath, Jochen 1 ; Hermann, Felix 1 ; Reitmeier, Michel 1

1 Goethe-Universität Frankfurt am Main, Robert-Mayer Str. 10, 60629 Frankfurt, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2023__12_1_135_0,
     author = {Blath, Jochen and Hermann, Felix and Reitmeier, Michel},
     title = {The {Contact} {Process} with switching},
     journal = {MathematicS In Action},
     pages = {135--154},
     year = {2023},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {12},
     number = {1},
     doi = {10.5802/msia.35},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/msia.35/}
}
TY  - JOUR
AU  - Blath, Jochen
AU  - Hermann, Felix
AU  - Reitmeier, Michel
TI  - The Contact Process with switching
JO  - MathematicS In Action
PY  - 2023
SP  - 135
EP  - 154
VL  - 12
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://www.numdam.org/articles/10.5802/msia.35/
DO  - 10.5802/msia.35
LA  - en
ID  - MSIA_2023__12_1_135_0
ER  - 
%0 Journal Article
%A Blath, Jochen
%A Hermann, Felix
%A Reitmeier, Michel
%T The Contact Process with switching
%J MathematicS In Action
%D 2023
%P 135-154
%V 12
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://www.numdam.org/articles/10.5802/msia.35/
%R 10.5802/msia.35
%G en
%F MSIA_2023__12_1_135_0
Blath, Jochen; Hermann, Felix; Reitmeier, Michel. The Contact Process with switching. MathematicS In Action, Maths Bio, Tome 12 (2023) no. 1, pp. 135-154. doi: 10.5802/msia.35

[1] Baar, Martina; Coquille, Loren; Mayer, Hannah; Hoelzel, Michael; Rogava, Meri; Tueting, Thomas; Bovier, Anton A stochastic model for immunotherapy of cancer, Sci. Rep., Volume 6 (2016), 24169 | DOI

[2] Balaban, Nathalie Q.; Merrin, Jack; Chait, Remy; Kowalik, Lukasz; Leibler, Stanislas Bacterial persistence as a phenotypic switch, Science, Volume 305 (2004) no. 5690, pp. 1622-1625 | DOI

[3] Ten lectures on particle systems, Springer (1995), pp. 97-201 | Zbl | DOI

[4] Blath, Jochen; Hermann, Felix; Slowik, Martin A branching process model for dormancy and seed banks in randomly fluctuating environments, J. Math. Biol., Volume 83 (2021) no. 2 | Zbl | MR | DOI

[5] Blath, Jochen; Tóbiás, András Invasion and fixation of microbial dormancy traits under competitive pressure, Stochastic Processes Appl., Volume 130 (2020) no. 12, pp. 7363-7395 | Zbl | MR | DOI

[6] Blath, Jochen; Tóbiás, András Microbial virus epidemics in the presence of contact-mediated host dormancy, ESAIM, Probab. Stat., Volume 27 (2023), pp. 174-220 | Zbl | MR | DOI

[7] Bramson, Maury; Durrett, Rick; Schonmann, Roberto H. The contact process in a random environment, Ann. Probab., Volume 19 (1991) no. 3, pp. 960-983 | MR | Zbl | DOI

[8] Broman, Erik I. Stochastic domination for a hidden Markov chain with applications to the Contact Process in randomly evolving environment, Ann. Probab., Volume 35 (2007) no. 6, pp. 2263-2293 | Zbl | MR | DOI

[9] Dombry, Clément; Mazza, Christian; Bansaye, Vincent. Phenotypic diversity and population growth in a fluctuating environment, Adv. Appl. Probab., Volume 43 (2011) no. 2, pp. 375-398 | Zbl | MR | DOI

[10] Endo, Hiroko; Inoue, Masahiro Dormancy in cancer, Cancer Sci., Volume 110 (2019) no. 2, pp. 474-480 | DOI

[11] Fisher, Robert A.; Gollan, Bridget; Helaine, Sophie Persistent bacterial infections and persister cells, Nat. Rev. Microbiol., Volume 15 (2017) no. 8, pp. 453-464 | DOI

[12] Floreani, Simone; Giardinà, Cristian; den Hollander, Frank; Nandan, Shubhamoy; Redig, Frank Switching interacting particle systems: scaling limits, uphill diffusion and boundary layer, J. Stat. Phys., Volume 186 (2022) no. 3, 33, 45 pages | Zbl | MR | DOI

[13] Harris, Theodore E. Contact interactions on a lattice, Ann. Probab., Volume 2 (1974) no. 6, pp. 969-988 | Zbl | MR | DOI

[14] Jackson, Simon A.; Fineran, Peter C. Bacterial dormancy curbs phage epidemics, Nature, Volume 570 (2019), pp. 173-174 | DOI

[15] Klein, Abel Extinction of contact and percolation processes in a random environment, Ann. Probab., Volume 22 (1994) no. 3, pp. 1227-1251 | MR | Zbl

[16] Koyuncum, Orkide; MacGibeny, Margaret; Enquist, Lynn Latent versus productive infection: the alpha herpesvirus switch, Future Virol., Volume 13 (2018), pp. 431-443 | DOI

[17] Lennon, Jay T.; den Hollander, Frank; Wilke-Berenguer, Maite; Blath, Jochen Principles of seed banks and the emergence of complexity from dormancy, Nat. Commun., Volume 12 (2021) no. 1 | DOI

[18] Lennon, Jay T.; Jones, Stuart E. Microbial seed banks: the ecological and evolutionary implications of dormancy, Nat. Rev. Microbiol., Volume 9 (2011), pp. 119-130 | DOI

[19] Lewis, Kim Persister cells, Ann. Rev. Microbiol., Volume 64 (2010), pp. 357-372 | DOI

[20] Liggett, Thomas M. Interacting particle systems, Grundlehren der Mathematischen Wissenschaften, 276, Springer, 1985, xv+488 pages | MR | DOI

[21] Liggett, Thomas M. Improved upper bounds for the contact process critical value, Ann. Probab., Volume 23 (1995) no. 2, pp. 697-723 (Accessed 2022-05-05) | Zbl | MR

[22] Liggett, Thomas M. Stochastic interacting systems: contact, voter and exclusion processes, Grundlehren der Mathematischen Wissenschaften, 324, Springer, 1999, xii+332 pages | MR | DOI

[23] Neuhauser, Claudia Ergodic theorems for the multitype contact process, Probab. Theory Relat. Fields, Volume 91 (1992) no. 3-4, pp. 467-506 | Zbl | MR | DOI

[24] Remenik, Daniel The contact process in a dynamic random environment, Ann. Appl. Probab., Volume 18 (2008) no. 6, pp. 2392-2420 | Zbl | MR | DOI

[25] Steif, Jeffrey E.; Warfheimer, Marcus The critical contact process in a randomly evolving environment dies out, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 4 (2008), pp. 337-357 | Zbl | MR

Cité par Sources :