Parasite infection in a cell population with deaths and reinfections
MathematicS In Action, Maths Bio, Tome 12 (2023) no. 1, pp. 23-47

We introduce a model of parasite infection in a cell population, where cells can be infected, either at birth through maternal transmission, from a contact with the parasites reservoir, or because of the parasites released in the cell medium by infected cells. Inside the cells and between infection events, the quantity of parasites evolves as a general non linear branching process. We study the long time behaviour of the infection.

Publié le :
DOI : 10.5802/msia.30
Classification : 60J80, 60J85, 60H10
Keywords: Continuous-time and space branching Markov processes, Structured population, Long time behaviour, Birth and Death Processes

Smadi, Charline 1, 2

1 Univ. Grenoble Alpes, INRAE, LESSEM, 38000 Grenoble, France
2 Univ. Grenoble Alpes, CNRS, Institut Fourier, 38000 Grenoble, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2023__12_1_23_0,
     author = {Smadi, Charline},
     title = {Parasite infection in a cell population with deaths and reinfections},
     journal = {MathematicS In Action},
     pages = {23--47},
     year = {2023},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {12},
     number = {1},
     doi = {10.5802/msia.30},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/msia.30/}
}
TY  - JOUR
AU  - Smadi, Charline
TI  - Parasite infection in a cell population with deaths and reinfections
JO  - MathematicS In Action
PY  - 2023
SP  - 23
EP  - 47
VL  - 12
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://www.numdam.org/articles/10.5802/msia.30/
DO  - 10.5802/msia.30
LA  - en
ID  - MSIA_2023__12_1_23_0
ER  - 
%0 Journal Article
%A Smadi, Charline
%T Parasite infection in a cell population with deaths and reinfections
%J MathematicS In Action
%D 2023
%P 23-47
%V 12
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U https://www.numdam.org/articles/10.5802/msia.30/
%R 10.5802/msia.30
%G en
%F MSIA_2023__12_1_23_0
Smadi, Charline. Parasite infection in a cell population with deaths and reinfections. MathematicS In Action, Maths Bio, Tome 12 (2023) no. 1, pp. 23-47. doi: 10.5802/msia.30

[1] Alsmeyer, Gerold; Gröttrup, Sören A host-parasite model for a two-type cell population, Adv. Appl. Probab., Volume 45 (2013) no. 3, pp. 719-741 | Zbl | MR | DOI

[2] Alsmeyer, Gerold; Gröttrup, Sören Branching within branching: A model for host–parasite co-evolution, Stochastic Processes Appl., Volume 126 (2016) no. 6, pp. 1839-1883 | Zbl | MR | DOI

[3] Alzari, Farida Nato; Longacre, Shirley; Lafaye, Pierre; Mazie, Jean-Claude Phage-displayed mimotopes elicit monoclonal antibodies specific for a malaria vaccine candidate, Biol. Chem., Volume 379 (1998), pp. 65-70

[4] Bansaye, Vincent Proliferating parasites in dividing cells: Kimmel’s branching model revisited, Ann. Appl. Probab., Volume 18 (2008) no. 3, pp. 967-996 | Zbl | MR | DOI

[5] Bansaye, Vincent Cell contamination and branching processes in a random environment with immigration, Adv. Appl. Probab., Volume 41 (2009) no. 4, pp. 1059-1081 | Zbl | MR | DOI

[6] Bansaye, Vincent; Delmas, Jean-François; Marsalle, Laurence; Tran, Viet Chi Limit theorems for Markov processes indexed by continuous time Galton–Watson trees, Ann. Appl. Probab., Volume 21 (2011) no. 6, pp. 2263-2314 | Zbl | MR

[7] Bansaye, Vincent; Pardo, Juan Carlos; Smadi, Charline On the extinction of continuous state branching processes with catastrophes, Electron. J. Probab., Volume 18 (2013), pp. 1-31 | Zbl | MR | DOI

[8] Bansaye, Vincent; Simatos, Florian On the scaling limits of Galton-Watson processes in varying environments, Electron. J. Probab., Volume 20 (2015) | Zbl | MR

[9] Bansaye, Vincent; Tran, Viet Chi Branching Feller diffusion for cell division with parasite infection, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 8 (2011), pp. 95-127 | Zbl | MR

[10] Calendar, Richard; Inman, Ross Phage biology, Phages: their role in bacterial pathogenesis and biotechnology, Wiley Publishing, 2005, pp. 18-36

[11] Cloez, Bertrand Limit theorems for some branching measure-valued processes, Adv. Appl. Probab., Volume 49 (2017) no. 2, pp. 549-580 | Zbl | MR | DOI

[12] Detels, Roger Oxford textbook of global public health, 2, Oxford Textbook, 2015 | DOI

[13] Durrett, Richard Branching process models of cancer, Branching process models of cancer, Springer, 2015, pp. 1-63 | Zbl

[14] Georgii, Hans-Otto; Baake, Ellen Supercritical multitype branching processes: the ancestral types of typical individuals, Adv. Appl. Probab., Volume 35 (2003) no. 4, pp. 1090-1110 | Zbl | MR | DOI

[15] Hardy, Robert; Harris, Simon C. A spine approach to branching diffusions with applications to L p -convergence of martingales, Séminaire de probabilités XLII, Springer, 2009, pp. 281-330 | Zbl | DOI

[16] Ikeda, Nobuyuki; Watanabe, Shinzo Stochastic differential equations and diffusion processes, 24, Elsevier, 1989

[17] Kimmel, Marek Quasistationarity in a branching model of division-within-division, Classical and modern branching processes (Minneapolis, MN, 1994) (The IMA Volumes in Mathematics and its Applications), Volume 84, Springer, 1997, pp. 157-164 | Zbl | MR | DOI

[18] Larocca, David; Brug, M. A.; Jensen-Pergakes, Kristen; Ravey, E.; Gonzalez, Ana; Baird, Andrew Evolving phage vectors for cell targeted gene delivery, Curr. Pharm. Biotechnol., Volume 3 (2002) no. 1, pp. 45-57 | DOI

[19] Li, Pei-Sen; Yang, Xu; Zhou, Xiaowen A general continuous-state nonlinear branching process, Ann. Appl. Probab., Volume 29 (2019) no. 4, pp. 2523-2555 | Zbl | MR

[20] Marguet, Aline Uniform sampling in a structured branching population, Bernoulli, Volume 25 (2016), pp. 2649-2695 | Zbl | MR | DOI

[21] Marguet, Aline; Smadi, Charline Long time behaviour of continuous-state nonlinear branching processes with catastrophes, Electron. J. Probab., Volume 26 (2021), pp. 1-32 | Zbl | MR

[22] Marguet, Aline; Smadi, Charline Spread of parasites affecting death and division rates in a cell population (2022) (https://arxiv.org/abs/2211.08265)

[23] Marguet, Aline; Smadi, Charline Parasite infection in a cell population: role of the partitioning kernel (2023) (https://arxiv.org/abs/2305.06962)

[24] Méléard, Sylvie; Rœlly, Sylvie Evolutive two-level population process and large population approximations, Ann. Univ. Buchar., Math. Ser., Volume 4 (2013), pp. 37-70 | Zbl | MR

[25] Meola, Annalisa; Delmastro, Paola; Monaci, Paolo; Luzzago, Alessandra; Nicosia, Alfredo; Felici, Franco; Cortese, Riccardo; Galfrè, Giovanni Derivation of vaccines from mimotopes. Immunologic properties of human hepatitis B virus surface antigen mimotopes displayed on filamentous phage., J. Immunol., Volume 154 (1995) no. 7, pp. 3162-3172 | DOI

[26] Osorio, Luis; Winter, Anita Two level branching model for virus population under cell division (2020) (https://arxiv.org/abs/2004.14352)

[27] Palau, Sandra; Pardo, Juan Carlos Branching processes in a Lévy random environment, Acta Appl. Math., Volume 153 (2018) no. 1, pp. 55-79 | DOI | Zbl

[28] Protter, Philip E. Stochastic differential equations, Stochastic integration and differential equations, Springer, 2005, pp. 249-361 | DOI

[29] Russel, Marjorie; Lowman, Henry B.; Clackson, Tim Introduction to phage biology and phage display, Phage Display: A practical approach, Oxford University Press, 2004, pp. 1-26

[30] Salivar, William O.; Tzagoloff, Helen; Pratt, David Some physical-chemical and biological properties of the rod-shaped coliphage M13, Virology, Volume 24 (1964) no. 3, pp. 359-371 | DOI

[31] Voinson, Marina; Alvergne, Alexandra; Billiard, Sylvain; Smadi, Charline Stochastic dynamics of an epidemic with recurrent spillovers from an endemic reservoir, J. Theor. Biol., Volume 457 (2018), pp. 37-50 | Zbl | MR | DOI

Cité par Sources :