Time change for unipotent flows and rigidity
Mathematics Research Reports, Tome 4 (2023), pp. 11-22

We prove a dichotomy regarding the behavior of one-parameter unipotent flows on quotients of semisimple lie groups under time change. We show that if u t (1) acting on G 1 /Γ 1 is such a flow it satisfies exactly one of the following:

  • (1) The flow is loosely Kronecker, and hence isomorphic after an appropriate time change to any other loosely Kronecker system.
  • (2) The flow exhibits the following rigid behavior: if the one-parameter unipotent flow u t (1) on G 1 /Γ 1 is isomorphic after time change to another such flow u t (2) on G 2 /Γ 2 , then G 1 /Γ 1 is isomorphic to G 2 /Γ 2 with the isomorphism taking u t (1) to u t (2) and moreover the time change is cohomologous to a trivial one.

The full details will appear in a later publication.

Reçu le :
Révisé le :
Publié le :
DOI : 10.5802/mrr.15
Classification : 37A17, 37A20, 37A35, 37C10
Keywords: time change, rigidity, unipotent flows, Kakutani equivalence

Lindenstrauss, Elon 1 ; Wei, Daren 2

1 Einstein Institute of Mathematics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190401, Israel
2 Department of Mathematics, National University of Singapore, 119076, Singapore
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MRR_2023__4__11_0,
     author = {Lindenstrauss, Elon and Wei, Daren},
     title = {Time change for unipotent flows and rigidity},
     journal = {Mathematics Research Reports},
     pages = {11--22},
     year = {2023},
     publisher = {MathOA foundation},
     volume = {4},
     doi = {10.5802/mrr.15},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/mrr.15/}
}
TY  - JOUR
AU  - Lindenstrauss, Elon
AU  - Wei, Daren
TI  - Time change for unipotent flows and rigidity
JO  - Mathematics Research Reports
PY  - 2023
SP  - 11
EP  - 22
VL  - 4
PB  - MathOA foundation
UR  - https://www.numdam.org/articles/10.5802/mrr.15/
DO  - 10.5802/mrr.15
LA  - en
ID  - MRR_2023__4__11_0
ER  - 
%0 Journal Article
%A Lindenstrauss, Elon
%A Wei, Daren
%T Time change for unipotent flows and rigidity
%J Mathematics Research Reports
%D 2023
%P 11-22
%V 4
%I MathOA foundation
%U https://www.numdam.org/articles/10.5802/mrr.15/
%R 10.5802/mrr.15
%G en
%F MRR_2023__4__11_0
Lindenstrauss, Elon; Wei, Daren. Time change for unipotent flows and rigidity. Mathematics Research Reports, Tome 4 (2023), pp. 11-22. doi: 10.5802/mrr.15

[1] Artigiani, M.; Flaminio, L.; Ravotti, D. On rigidity properties of time-changes of unipotent flows, 2022 (preprint arXiv:2209.01253)

[2] Feldman, J. New K-automorphisms and a problem of Kakutani, Israel J. Math., Volume 24 (1976) no. 1, pp. 16-38 | DOI | MR | Zbl

[3] Gerber, Marlies; Kunde, Philipp Anti-classification results for the Kakutani equivalence relation, 2021 (preprint arXiv:2109.06086)

[4] Jacobson, Nathan Lie algebras, Dover Publications, Inc., New York, 1979, ix+331 pages (Republication of the 1962 original) | MR

[5] Kanigowski, Adam; Vinhage, Kurt; Wei, Daren Kakutani equivalence of unipotent flows, Duke Math. J., Volume 170 (2021) no. 7, pp. 1517-1583 | DOI | MR | Zbl

[6] Katok, A. B. Monotone equivalence in ergodic theory, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977) no. 1, p. 104-157, 231 | MR

[7] Kelmer, Dubi; Sarnak, Peter Strong spectral gaps for compact quotients of products of PSL (2,), J. Eur. Math. Soc. (JEMS), Volume 11 (2009) no. 2, pp. 283-313 | DOI | MR | Zbl

[8] Kleinbock, D. Y.; Margulis, G. A. Logarithm laws for flows on homogeneous spaces, Invent. Math., Volume 138 (1999) no. 3, pp. 451-494 | DOI | MR | Zbl

[9] Knapp, Anthony W. Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 1996, xvi+604 pages | DOI | MR

[10] Margulis, G. A. The action of unipotent groups in a lattice space, Mat. Sb. (N.S.), Volume 86(128) (1971), pp. 552-556 | MR

[11] Margulis, G. A. Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991, x+388 pages | DOI | MR

[12] Morris, Dave Witte Ratner’s theorems on unipotent flows, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2005, xii+203 pages | MR

[13] Ornstein, Donald S.; Rudolph, Daniel J.; Weiss, Benjamin Equivalence of measure preserving transformations, Mem. Amer. Math. Soc., 37, number 262, American Mathematical Society, 1982, xii+116 pages | DOI | MR

[14] Ratner, Marina Horocycle flows are loosely Bernoulli, Israel J. Math., Volume 31 (1978) no. 2, pp. 122-132 | DOI | MR | Zbl

[15] Ratner, Marina The Cartesian square of the horocycle flow is not loosely Bernoulli, Israel J. Math., Volume 34 (1979) no. 1-2, p. 72-96 (1980) | DOI | MR | Zbl

[16] Ratner, Marina Some invariants of Kakutani equivalence, Israel J. Math., Volume 38 (1981) no. 3, pp. 231-240 | DOI | MR | Zbl

[17] Ratner, Marina Rigidity of horocycle flows, Ann. of Math. (2), Volume 115 (1982) no. 3, pp. 597-614 | DOI | MR | Zbl

[18] Ratner, Marina Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), Volume 118 (1983) no. 2, pp. 277-313 | DOI | MR | Zbl

[19] Ratner, Marina Rigidity of time changes for horocycle flows, Acta Math., Volume 156 (1986) no. 1-2, pp. 1-32 | DOI | MR | Zbl

[20] Ratner, Marina On measure rigidity of unipotent subgroups of semisimple groups, Acta Math., Volume 165 (1990) no. 3-4, pp. 229-309 | DOI | MR | Zbl

[21] Ratner, Marina On Raghunathan’s measure conjecture, Ann. of Math. (2), Volume 134 (1991) no. 3, pp. 545-607 | DOI | MR | Zbl

[22] Ratner, Marina Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J., Volume 63 (1991) no. 1, pp. 235-280 | DOI | MR | Zbl

[23] Ratner, Marina Interactions between ergodic theory, Lie groups, and number theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel (1995), pp. 157-182 | MR | DOI | Zbl

[24] Tang, Siyuan New time-changes of unipotent flows on quotients of Lorentz groups, J. Mod. Dyn., Volume 18 (2022), pp. 13-67 | DOI | MR | Zbl

[25] Witte, Dave Rigidity of some translations on homogeneous spaces, Invent. Math., Volume 81 (1985) no. 1, pp. 1-27 | DOI | MR

[26] Witte, Dave Zero-entropy affine maps on homogeneous spaces, Amer. J. Math., Volume 109 (1987) no. 5, pp. 927-961 | DOI | MR | Zbl

Cité par Sources :