Hyperbolicity from contact surgery
Mathematics Research Reports, Tome 4 (2023), pp. 1-10

A Dehn surgery on the periodic fiber flow of the unit tangent bundle of a surface produces a uniformly hyperbolic Cantor set for the resulting contact flow.

Reçu le :
Révisé le :
Publié le :
DOI : 10.5802/mrr.14
Classification : 37D20, 57N10
Keywords: Hyperbolic flow, 3-manifold, contact flow, surgery

Hasselblatt, Boris 1 ; Heberle, Curtis 1

1 Department of Mathematics, Tufts University, Medford, MA 02155, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MRR_2023__4__1_0,
     author = {Hasselblatt, Boris and Heberle, Curtis},
     title = {Hyperbolicity from contact surgery},
     journal = {Mathematics Research Reports},
     pages = {1--10},
     year = {2023},
     publisher = {MathOA foundation},
     volume = {4},
     doi = {10.5802/mrr.14},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/mrr.14/}
}
TY  - JOUR
AU  - Hasselblatt, Boris
AU  - Heberle, Curtis
TI  - Hyperbolicity from contact surgery
JO  - Mathematics Research Reports
PY  - 2023
SP  - 1
EP  - 10
VL  - 4
PB  - MathOA foundation
UR  - https://www.numdam.org/articles/10.5802/mrr.14/
DO  - 10.5802/mrr.14
LA  - en
ID  - MRR_2023__4__1_0
ER  - 
%0 Journal Article
%A Hasselblatt, Boris
%A Heberle, Curtis
%T Hyperbolicity from contact surgery
%J Mathematics Research Reports
%D 2023
%P 1-10
%V 4
%I MathOA foundation
%U https://www.numdam.org/articles/10.5802/mrr.14/
%R 10.5802/mrr.14
%G en
%F MRR_2023__4__1_0
Hasselblatt, Boris; Heberle, Curtis. Hyperbolicity from contact surgery. Mathematics Research Reports, Tome 4 (2023), pp. 1-10. doi: 10.5802/mrr.14

[1] Burton, Robert; Easton, Robert W. Ergodicity of linked twist maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) (Lecture Notes in Math.), Volume 819, Springer, Berlin (1980), pp. 35-49 | DOI | MR | Zbl

[2] Colin, Vincent; Dehornoy, Pierre; Rechtman, Ana On the existence of supporting broken book decompositions for contact forms in dimension 3, 2020 | arXiv

[3] Devaney, Robert L. Subshifts of finite type in linked twist mappings, Proc. Amer. Math. Soc., Volume 71 (1978) no. 2, pp. 334-338 | DOI | MR | Zbl

[4] Devaney, Robert L. Linked twist mappings are almost Anosov, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) (Lecture Notes in Math.), Volume 819, Springer, Berlin (1980), pp. 121-145 | MR | Zbl | DOI

[5] Fisher, Todd; Hasselblatt, Boris Hyperbolic flows, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2019 | DOI

[6] Foulon, Patrick; Hasselblatt, Boris Contact Anosov flows on hyperbolic 3-manifolds, Geom. Topol., Volume 17 (2013) no. 2, pp. 1225-1252 | DOI | MR | Zbl

[7] Foulon, Patrick; Hasselblatt, Boris; Vaugon, Anne Orbit growth of contact structures after surgery, Ann. H. Lebesgue, Volume 4 (2021), pp. 1103-1141 | DOI | MR | Zbl | Numdam

[8] Nicol, Matthew A Bernoulli toral linked twist map without positive Lyapunov exponents, Proc. Amer. Math. Soc., Volume 124 (1996) no. 4, pp. 1253-1263 | DOI | MR | Zbl

[9] Nicol, Matthew Stochastic stability of Bernoulli toral linked twist maps of finite and infinite entropy, Ergodic Theory Dynam. Systems, Volume 16 (1996) no. 3, pp. 493-518 | DOI | Zbl | MR

[10] Przytycki, Feliks Ergodicity of toral linked twist mappings, Ann. Sci. École Norm. Sup. (4), Volume 16 (1983) no. 3, p. 345-354 (1984) | Zbl | DOI | Numdam | MR

[11] Springham, J.; Sturman, R. Polynomial decay of correlations in linked-twist maps, Ergodic Theory Dynam. Systems, Volume 34 (2014) no. 5, pp. 1724-1746 | DOI | Zbl | MR

[12] Springham, James Ergodic properties of linked-twist maps, 2008 | arXiv

[13] Springham, James; Wiggins, Stephen Bernoulli linked-twist maps in the plane, Dyn. Syst., Volume 25 (2010) no. 4, pp. 483-499 | DOI | Zbl | MR

[14] Sturman, Rob; Ottino, Julio M.; Wiggins, Stephen The mathematical foundations of mixing, Cambridge Monographs on Applied and Computational Mathematics, 22, Cambridge University Press, Cambridge, 2006, xx+281 pages (The linked twist map as a paradigm in applications: micro to macro, fluids to solids) | DOI | MR

[15] Wojtkowski, Maciej Linked twist mappings have the K-property, Nonlinear dynamics (Internat. Conf., New York, 1979) (Ann. New York Acad. Sci.), Volume 357, New York Acad. Sci., New York, 1980, pp. 65-76 | Zbl | MR

Cité par Sources :