We study open subgroups of in terms of some associated Lie algebras without assuming that is a pro- group, thereby extending a theorem of Pink. The result has applications to the study of families of Galois representations.
Nous étudions les sous-groupes ouverts de en termes de certaines algèbres de Lie, et ceci sans supposer que est un groupe pro-. Le résultat étend un théorème dû à Pink et a des applications à l’étude de certaines familles de représentations galoisiennes.
Révisé le :
Accepté le :
Publié le :
Keywords: Lie algebras, profinite groups, special linear group, $p$-adic integers
Lombardo, Davide 1
CC-BY-ND 4.0
@article{JTNB_2017__29_1_85_0,
author = {Lombardo, Davide},
title = {Pink-type results for general subgroups of $\operatorname{SL}_2(\mathbb{Z}_\ell )^n$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {85--127},
year = {2017},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {29},
number = {1},
doi = {10.5802/jtnb.970},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.970/}
}
TY - JOUR
AU - Lombardo, Davide
TI - Pink-type results for general subgroups of $\operatorname{SL}_2(\mathbb{Z}_\ell )^n$
JO - Journal de théorie des nombres de Bordeaux
PY - 2017
SP - 85
EP - 127
VL - 29
IS - 1
PB - Société Arithmétique de Bordeaux
UR - https://www.numdam.org/articles/10.5802/jtnb.970/
DO - 10.5802/jtnb.970
LA - en
ID - JTNB_2017__29_1_85_0
ER -
%0 Journal Article
%A Lombardo, Davide
%T Pink-type results for general subgroups of $\operatorname{SL}_2(\mathbb{Z}_\ell )^n$
%J Journal de théorie des nombres de Bordeaux
%D 2017
%P 85-127
%V 29
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.970/
%R 10.5802/jtnb.970
%G en
%F JTNB_2017__29_1_85_0
Lombardo, Davide. Pink-type results for general subgroups of $\operatorname{SL}_2(\mathbb{Z}_\ell )^n$. Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 1, pp. 85-127. doi: 10.5802/jtnb.970
[1] Bounds for Serre’s open image theorem for elliptic curves over number fields, Algebra Number Theory, Volume 9 (2015) no. 10, pp. 2347-2395 | DOI
[2] An explicit open image theorem for products of elliptic curves, J. Number Theory, Volume 168 (2016), pp. 386-412 | DOI
[3] Galois properties of division fields of elliptic curves, Bull. Lond. Math. Soc., Volume 25 (1993) no. 3, pp. 247-254 | DOI
[4] Classification of pro- subgroups of over a -adic ring, where is an odd prime, Compos. Math., Volume 88 (1993) no. 3, pp. 251-264
[5] Galois action on division points of Abelian varieties with real multiplications, Am. J. Math., Volume 98 (1976), pp. 751-804 | DOI
[6] Abelian -adic Representations and Elliptic Curves, Research Notes in Mathematics, A. K. Peters/CRC Press, 1997, 208 pages
[7] Automorphisms of -dimensional linear groups over a local rings, J. Math. Res. Expo., Volume 5 (1985) no. 1, pp. 25-28
[8] Twists of Galois representations and projective automorphisms, J. Number Theory, Volume 74 (1999) no. 1, pp. 1-18 | DOI
Cité par Sources :





