Using the geometry of the projective plane over the finite field , we construct a Hermitian Lorentzian lattice of dimension defined over a certain number ring that depends on . We show that infinitely many of these lattices are -modular, that is, , where is some prime in such that .
The Lorentzian lattices sometimes lead to construction of interesting positive definite lattices. In particular, if is a rational prime such that is norm of some element in , then we find a dimensional even unimodular positive definite integer lattice such that . We find that is the Leech lattice.
En utilisant la géométrie du plan projectif sur un corps fini , nous construisons un réseau hermitien de type Lorentz de dimension defini sur un certain anneau d’entiers dépendant de . Nous montrons qu’une infinité de ces réseaux sont -modulaires, c’est-à-dire que , où est un premier de tel que .
Les réseaux lorentziens mènent parfois à la construction de réseaux définis positifs intéressants. En particulier, si est tel que est la norme d’un élément de , alors nous obtenons un réseau entier unimodulaire défini positif et de dimension paire tel que . Nous prouvons que est le réseau de Leech.
@article{JTNB_2014__26_2_269_0, author = {Basak, Tathagata}, title = {Modular lattices from finite projective planes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {269--279}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {2}, year = {2014}, doi = {10.5802/jtnb.867}, mrnumber = {3320480}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.867/} }
TY - JOUR AU - Basak, Tathagata TI - Modular lattices from finite projective planes JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 269 EP - 279 VL - 26 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.867/ DO - 10.5802/jtnb.867 LA - en ID - JTNB_2014__26_2_269_0 ER -
%0 Journal Article %A Basak, Tathagata %T Modular lattices from finite projective planes %J Journal de théorie des nombres de Bordeaux %D 2014 %P 269-279 %V 26 %N 2 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.867/ %R 10.5802/jtnb.867 %G en %F JTNB_2014__26_2_269_0
Basak, Tathagata. Modular lattices from finite projective planes. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 2, pp. 269-279. doi : 10.5802/jtnb.867. https://www.numdam.org/articles/10.5802/jtnb.867/
[1] D. Allcock, The Leech lattice and complex hyperbolic reflections. Invent. Math. 140 (2000), 283–301. | MR | Zbl
[2] D. Allcock, A monstrous proposal. Groups and Symmetries: From neolithic Scots to John McKay (2009), AMS and Centre de Recherches Math士atiques. arXiv:math/0606043. | MR | Zbl
[3] D. Allcock, On the complex reflection group. J. Alg. 322 (2009), 1454–1465 | MR | Zbl
[4] R. Bacher and B. Venkov, Lattices and association schemes: A unimodular example without roots in dimension 28. Ann. Inst. Fourier, Grenoble. 45, 5 (1995), 1163–1176. | EuDML | Numdam | MR | Zbl
[5] T. Basak, The complex Lorentzian Leech lattice and the bimonster. J. Alg. 309, no. 1 (2007), 32–56. | MR | Zbl
[6] T. Basak, Reflection group of the quaternionic Lorentzian Leech lattice. J. Alg. 309, no. 1 (2007), 57–68. | MR | Zbl
[7] T. Basak, The complex Lorentzian Leech lattice and the bimonster (II). preprint (2012), arXiv:0811.0062, submitted. | MR
[8] A. I. Bondal, Invariant lattices in Lie algebras of type (Russian). Vestnik Moskov. Univ. Ser. I Mat. Mekh. 93, no. 1 (1986), 52–54. | MR | Zbl
[9] J. H. Conway, S. P. Norton and L. H. Soicher, The bimonster, the group , and the projective plane of order 3. “ Computers in Algebra" (M. C. Tangara, Ed.), Lecture Notes in Pure and Applied Mathematics, No 111, Dekker, New York, (1988), 27–50. | MR | Zbl
[10] J. H. Conway and C. S. Simons, 26 Implies the Bimonster. J. Alg. 235 (2001), 805–814. | MR | Zbl
[11] J. H. Conway, and N. J. A. Sloane, Sphere Packings, Lattices and Groups 3rd Ed. Springer-Verlag, 1998. | Zbl
[12] A. Fröhlich and M.J. Taylor, Algebraic number theory. Cambridge University Press, 1991. | MR | Zbl
[13] R. L. Graham and J. Macwilliams, On the number of information symbols in the difference set cyclic codes. The Bell System Technical Journal, Vol XLV, No. 7, 1966. | MR | Zbl
[14] A. A. Ivanov, A geometric characterization of the monster. Groups, Combinatorics and Geometry, edited by M. Liebeck and J. Saxl, London Mathematical Society Lecture Note Series, No. 165, Cambridge Univ. Press, (1992), 46–62. | MR | Zbl
[15] A. A. Ivanov, –groups via transitive extension. J. Alg. 218 (1999) 412–435. | MR | Zbl
[16] A. I. Kostrikin and H. T. Pham, Orthogonal decompositions and integral lattices. Walter de Gruyter, 1994. | MR | Zbl
[17] G. Nebe and K. Schindelar, S-extremal strongly modular lattices. J. Théor. Nombres Bordeaux, 19 no. 3, (2007), 68–701. | Numdam | MR | Zbl
[18] J. P. Serre, A course in Arithmetic. Springer-Verlag, 1973. | MR | Zbl
[19] J. Singer, A theorem in finite projective geometry and some applications to number theory. Trans. A. M. S. 43, No. 3 (1938), 377–385. | MR
Cited by Sources: