Let denote the class number of -th layer of the cyclotomic -extension of . Weber proved that is odd and Horie proved that is not divisible by a prime number satisfying . In a previous paper, the authors showed that is not divisible by a prime number less than . In this paper, by investigating properties of a special unit more precisely, we show that is not divisible by a prime number less than . Our argument also leads to the conclusion that is not divisible by a prime number satisfying .
Soit le nombres de classes du -ième étage de la -extension cyclotomique de . Weber a prouvé que est impair et Horie a prouvé que n’est divisible par aucun nombre premier satisfaisant . Dans un article précédent, les auteurs ont montré n’est divisible par aucun nombre premier inférieur à . Dans le présent article, en étudiant plus précisément les propriétés d’une unité particulière, nous montrons que n’est divisible par aucun nombre premier inférieur à . Notre argument conduit aussi à la conclusion que n’est divisible par aucun nombre premier satisfaisant .
Fukuda, Takashi 1 ; Komatsu, Keiichi 2
@article{JTNB_2010__22_2_359_0,
author = {Fukuda, Takashi and Komatsu, Keiichi},
title = {Weber{\textquoteright}s class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, {II}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {359--368},
year = {2010},
publisher = {Universit\'e Bordeaux 1},
volume = {22},
number = {2},
doi = {10.5802/jtnb.720},
zbl = {1223.11133},
mrnumber = {2769067},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.720/}
}
TY - JOUR
AU - Fukuda, Takashi
AU - Komatsu, Keiichi
TI - Weber’s class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, II
JO - Journal de théorie des nombres de Bordeaux
PY - 2010
SP - 359
EP - 368
VL - 22
IS - 2
PB - Université Bordeaux 1
UR - https://www.numdam.org/articles/10.5802/jtnb.720/
DO - 10.5802/jtnb.720
LA - en
ID - JTNB_2010__22_2_359_0
ER -
%0 Journal Article
%A Fukuda, Takashi
%A Komatsu, Keiichi
%T Weber’s class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, II
%J Journal de théorie des nombres de Bordeaux
%D 2010
%P 359-368
%V 22
%N 2
%I Université Bordeaux 1
%U https://www.numdam.org/articles/10.5802/jtnb.720/
%R 10.5802/jtnb.720
%G en
%F JTNB_2010__22_2_359_0
Fukuda, Takashi; Komatsu, Keiichi. Weber’s class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, II. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 2, pp. 359-368. doi: 10.5802/jtnb.720
[1] H. Bauer, Numeriche Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper. J. Number Theory 1 (1969), 161–162. | Zbl | MR
[2] H. Cohn, A numerical study of Weber’s real class number calculation I. Numer. Math. 2 (1960), 347–362. | Zbl | MR
[3] T. Fukuda and K. Komatsu, Weber’s class number problem in the cyclotomic -extension of . Experimental Math. 18 (2009), 213–222. | Zbl | MR
[4] K. Horie, Ideal class groups of Iwasawa-theoritical abelian extensions over the rational field. J. London Math. Soc. 66 (2002), 257–275. | Zbl | MR
[5] K. Horie, The ideal class group of the basic -extension over an imaginary quadratic field. Tohoku Math. J. 57 (2005), 375–394. | Zbl | MR
[6] K. Horie, Triviality in ideal class groups of Iwasawa-theoretical abelian number fields. J. Math. Soc. Japan 57 (2005), 827–857. | Zbl | MR
[7] K. Horie, Primary components of the ideal class groups of Iwasawa-theoretical abelian number field. J. Math. Soc. Japan 59 (2007), 811–824. | Zbl | MR
[8] K. Horie, Certain primary components of the ideal class group of the -extension over the rationals. Tohoku Math. J. 59 (2007), 259–291. | MR
[9] K. Horie and M. Horie, The ideal class group of the -extension over the rationals. Tohoku Math. J., 61 (2009), 551–570. | MR
[10] J. M. Masley, Class numbers of real cyclic number fields with small conductor. Compositio Math. 37 (1978), 297–319. | Numdam | Zbl | MR | EuDML
[11] F. J. van der Linden, Class Number Computations of Real Abelian Number Fields. Math. Comp. 39 (1982), 693–707. | Zbl | MR
[12] L. C. Washington, Class numbers and -extensions. Math. Ann. 214 (1975), 177–193. | Zbl | MR | EuDML
[13] L. C. Washington, The non--part of the class number in a cyclotomic -extension. Inv. Math. 49 (1978), 87–97. | Zbl | MR | EuDML
[14] H. Weber, Theorie der Abel’schen Zahlkörper. Acta Math. 8 (1886), 193–263. | MR | JFM
Cité par Sources :





