Let be an odd prime, be a primitive root modulo and with . In 2007, R. Queme raised the question whether the -rank ( an odd prime ) of the ideal class group of the -th cyclotomic field is equal to the degree of the greatest common divisor over the finite field of and Kummer’s polynomial . In this paper, we shall give the complete answer for this question enumerating a counter-example.
Soit un nombre premier impair, une racine primitive modulo et avec . En 2007, R. Queme a posé la question : le -rang ( premier impair ) du groupe des classes d’idéaux du -ième corps cyclotomique est-il égal au degré du plus grand diviseur commun sur le corps fini de et du polynôme de Kummer . Dans cet article, nous donnons une réponse complète à cette question en produisant un contre-exemple.
@article{JTNB_2008__20_2_525_0,
author = {Taniguchi, Tetsuya},
title = {Prime factors of class number of cyclotomic fields},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {525--530},
year = {2008},
publisher = {Universit\'e Bordeaux 1},
volume = {20},
number = {2},
doi = {10.5802/jtnb.639},
zbl = {1163.11078},
mrnumber = {2477516},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.639/}
}
TY - JOUR AU - Taniguchi, Tetsuya TI - Prime factors of class number of cyclotomic fields JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 525 EP - 530 VL - 20 IS - 2 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.639/ DO - 10.5802/jtnb.639 LA - en ID - JTNB_2008__20_2_525_0 ER -
Taniguchi, Tetsuya. Prime factors of class number of cyclotomic fields. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 2, pp. 525-530. doi: 10.5802/jtnb.639
[1] Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc., Volume 24 (1970), pp. 457-462 | Zbl | MR
[2] Olga Taussky-Todd’s work in class field theory, Pacific J. Math. (1997) no. Special Issue, pp. 219-224 | Zbl
[3] Bestimmung der Anzahl nicht äquivalenter Classen für die aus ten Wurzeln der Einheit gebildeten complexen Zahlen und die idealen Factoren derselben, J. Reine Angew. Math., Volume 40 (1850), pp. 43-116 | Zbl
[4] Prime factors of cyclotomic class numbers, Math. Comp., Volume 31 (1977), pp. 599-607 | Zbl | MR
[5] Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, 30, Cambridge Univ. Press, Cambridge, 1997 | Zbl | MR
[6] Minus class groups of the fields of the th roots of unity, Math. Comp., Volume 67 (1998), pp. 1225-1245 | Zbl | MR
[7] Program codes of “Prime factors of class number of cyclotomic fields” (http://www.ma.noda.tus.ac.jp/g/tt/jtnb2008/)
[8] Introduction to cyclotomic fields, Springer-Verlag, New York, 2nd ed., 1997 | Zbl | MR
Cité par Sources :





