We show that if is an extremal even unimodular lattice of rank with , then is generated by its vectors of norms and . Our result is an extension of Ozeki’s result for the case .
Nous montrons que, si est un réseau unimodulaire pair extrémal de rang avec , alors est engendré par ses vecteurs de normes et . Notre résultat est une extension de celui d’Ozeki pour le cas .
Kominers, Scott Duke 1 ; Abel, Zachary 2
@article{JTNB_2008__20_2_365_0,
author = {Kominers, Scott Duke and Abel, Zachary},
title = {Configurations of rank-${40r}$ extremal even unimodular lattices (${r=1,2,3}$)},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {365--371},
year = {2008},
publisher = {Universit\'e Bordeaux 1},
volume = {20},
number = {2},
doi = {10.5802/jtnb.632},
mrnumber = {2477509},
zbl = {1185.11044},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.632/}
}
TY - JOUR
AU - Kominers, Scott Duke
AU - Abel, Zachary
TI - Configurations of rank-${40r}$ extremal even unimodular lattices (${r=1,2,3}$)
JO - Journal de théorie des nombres de Bordeaux
PY - 2008
SP - 365
EP - 371
VL - 20
IS - 2
PB - Université Bordeaux 1
UR - https://www.numdam.org/articles/10.5802/jtnb.632/
DO - 10.5802/jtnb.632
LA - en
ID - JTNB_2008__20_2_365_0
ER -
%0 Journal Article
%A Kominers, Scott Duke
%A Abel, Zachary
%T Configurations of rank-${40r}$ extremal even unimodular lattices (${r=1,2,3}$)
%J Journal de théorie des nombres de Bordeaux
%D 2008
%P 365-371
%V 20
%N 2
%I Université Bordeaux 1
%U https://www.numdam.org/articles/10.5802/jtnb.632/
%R 10.5802/jtnb.632
%G en
%F JTNB_2008__20_2_365_0
Kominers, Scott Duke; Abel, Zachary. Configurations of rank-${40r}$ extremal even unimodular lattices (${r=1,2,3}$). Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 2, pp. 365-371. doi: 10.5802/jtnb.632
[1] C. Bachoc, G. Nebe, B. Venkov, Odd unimodular lattices of minimum 4. Acta Arithmetica 101 (2002), 151–158. | Zbl | MR
[2] J. H. Conway, N. J. A. Sloane, Sphere Packing, Lattices and Groups (3rd edition). Springer-Verlag, New York, 1999. | Zbl | MR
[3] W. Ebeling, Lattices and Codes (2nd edition). Vieweg, Germany, 2002. | Zbl | MR
[4] N. D. Elkies, On the quotient of an extremal Type II lattice of rank , , or by the span of its minimal vectors. Preprint.
[5] S. D. Kominers, Configurations of extremal even unimodular lattices. To appear, Int. J. Num. Thy. (Preprint arXiv:0706.3082, 21 Jun 2007.)
[6] M. Ozeki, On even unimodular positive definite quadratic lattices of rank . Math. Z. 191 (1986), 283–291. | Zbl | MR
[7] M. Ozeki, On the structure of even unimodular extremal lattices of rank . Rocky Mtn. J. Math. 19 (1989), 847–862. | Zbl | MR
[8] M. Ozeki, On the configurations of even unimodular lattices of rank . Arch. Math. 46 (1986), 247–287. | Zbl | MR
[9] J.-P. Serre, A Course in Arithmetic. Springer-Verlag, New York, 1973. | Zbl | MR
Cité par Sources :






