In this paper, we fix a real quadratic field and take an ultimately periodic continued fraction with partial quotients in . We examine the convergence of the sequence and the increase in the sizes of both the numerators and denominators of the convergent fractions. Additionally, we establish necessary and sufficient conditions for a real quartic irrational to possess an ultimately periodic continued fraction that converges to it, with partial quotients belonging to . Finally, we analyze a specific example with . By the obtained results, we give a continued fraction expansion algorithm for those real quartic irrationals belonging to a quadratic extension of whose algebraic conjugates are all real. We prove that the expansion obtained from the algorithm is ultimately periodic and converges to the specified .
Dans cet article, nous fixons un corps quadratique réel et considérons une fraction continue ultimement périodique à quotients partiels dans . Nous étudions le problème de convergence et examinons l’augmentation de la taille des numérateurs et dénominateurs partiels des fractions convergentes. En outre, nous établissons des conditions nécessaires et suffisantes pour qu’un nombre irrationnel quartique réel admette un développement en fraction continue ultimement périodique à quotients partiels dans . Enfin, nous analysons l’exemple du corps . À partir des résultats obtenus, nous proposons un algorithme de développement en fraction continue des irrationnels quartiques réels appartenant à une extension quadratique de dont les conjugués algébriques sont tous réels. Nous démontrons que la fraction continue obtenue à partir de l’algorithme est ultimement périodique et converge vers .
Révisé le :
Accepté le :
Publié le :
Keywords: Continued fractions, quadratic fields, periodicity, Weil height
Wang, Zhaonan  1 , 2 ; Deng, Yingpu  1 , 2
CC-BY-ND 4.0
@article{JTNB_2024__36_3_1053_0,
author = {Wang, Zhaonan and Deng, Yingpu},
title = {On {Periodicity} of {Continued} {Fractions} with {Partial} {Quotients} in {Quadratic} {Number} {Fields}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {1053--1076},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {3},
doi = {10.5802/jtnb.1307},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1307/}
}
TY - JOUR AU - Wang, Zhaonan AU - Deng, Yingpu TI - On Periodicity of Continued Fractions with Partial Quotients in Quadratic Number Fields JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 1053 EP - 1076 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1307/ DO - 10.5802/jtnb.1307 LA - en ID - JTNB_2024__36_3_1053_0 ER -
%0 Journal Article %A Wang, Zhaonan %A Deng, Yingpu %T On Periodicity of Continued Fractions with Partial Quotients in Quadratic Number Fields %J Journal de théorie des nombres de Bordeaux %D 2024 %P 1053-1076 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1307/ %R 10.5802/jtnb.1307 %G en %F JTNB_2024__36_3_1053_0
Wang, Zhaonan; Deng, Yingpu. On Periodicity of Continued Fractions with Partial Quotients in Quadratic Number Fields. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1053-1076. doi: 10.5802/jtnb.1307
[1] Continued fractions and numeration in the fibonacci base, Discrete Math., Volume 306 (2006) no. 22, pp. 2828-2850 | MR | Zbl | DOI
[2] Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2007, xvi+652 pages | MR
[3] Periodic continued fractions over -integers in number fields and skolem’s -adic method, Acta Arith., Volume 197 (2021) no. 4, pp. 379-420 | Zbl | DOI | MR
[4] Continued fractions for complex numbers and values of binary quadratic forms, Trans. Am. Math. Soc., Volume 366 (2014) no. 7, pp. 3553-3583 | DOI | MR | Zbl
[5] Concrete mathematics: a foundation for computer science, Comput. Phys., Volume 3 (1989) no. 4, pp. 106-107 | DOI
[6] Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiii+558 pages | Zbl | DOI | MR
[7] Algebraic number fields, Graduate Studies in Mathematics, 7, American Mathematical Society, 1996, x+276 pages | Zbl | MR
[8] Covering radius of two-dimensional lattices, J. Syst. Sci. Math. Sci., Volume 32 (2012) no. 7, pp. 908-914 | MR | Zbl
[9] Continued fractions, Phys. Today, Volume 17 (1964) no. 11, pp. 70-71 | DOI | Zbl
[10] Démonstration d’un théorème d’arithmétique, Nouv. Mém.Acad. Roy. Sc. de Berlin (1770), pp. 123-133
[11] Approximation properties of some complex continued fractions, Monatsh. Math., Volume 77 (1973), pp. 396-403 | DOI | MR | Zbl
[12] Finiteness and periodicity of continued fractions over quadratic number fields, Bull. Soc. Math. Fr., Volume 150 (2022) no. 1, pp. 77-109 | MR | Zbl
[13] On the -expansions of real numbers, Acta Math. Acad. Sci. Hung., Volume 11 (1960), pp. 401-416 | DOI | MR | Zbl
[14] Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., Volume 8 (1957) no. 3-4, pp. 477-493 | DOI | MR | Zbl
[15] Continued fractions in algebraic number fields, Am. Math. Mon., Volume 84 (1977), pp. 37-39 | DOI | MR | Zbl
Cité par Sources :





