Approximation by non-convergents and second Lagrange spectrum
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1039-1051

Given an irrational number α consider its irrationality measure function

ψ α (t)=min 1qt,q qα.

The set of all values of

λ(α)=lim sup t ((tψ α (t)) -1 )

where α runs through the set is known as the Lagrange spectrum 𝕃. It is very well studied. In the present paper, we consider another irrationality measure function ψ α [2] (t) which deals with rational approximations to α by non-convergents. Replacing the function ψ α (t) in the definition of 𝕃 by ψ α [2] (t), we get a set 𝕃 2 which is called the second Lagrange spectrum. In the present paper, we give the complete structure of the initial discrete part of 𝕃 2 .

Etant donné un nombre irrationnel α, on considère sa mesure d’irrationalité

ψ α (t)=min 1qt,q qα.

L’ensemble 𝕃 des valeurs de la fonction

λ(α)=lim sup t ((tψ α (t)) -1 )

α parcourt l’ensemble , est appelé le spectre de Lagrange. Il est très bien étudié. Dans cet article, nous considérons une autre mesure d’irrationalité, ψ α [2] (t), qui traite l’approximation du nombre α par des rationnels non réduits. En remplaçant la fonction ψ α par ψ α [2] dans la définition de 𝕃, on obtient un ensemble 𝕃 2 appelé le spectre de Lagrange d’ordre deux. Dans cet article, nous donnons la structure complète de la partie discrète initiale de 𝕃 2 .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1306
Classification : 11J06
Keywords: Continued fractions, Diophantine approximation

Gayfulin, Dmitry  1 , 2

1 Graz University of Technology, Institute of Analysis and Number Theory, Steyrergasse 30/II 8010 Graz (Austria)
2 Big Data and Information Retrieval School Faculty of Computer Science National Research University Higher School of Economics 11 Pokrovsky boulevard Moscow 109028 (Russia)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_1039_0,
     author = {Gayfulin, Dmitry},
     title = {Approximation by non-convergents and second {Lagrange} spectrum},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1039--1051},
     year = {2024},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     doi = {10.5802/jtnb.1306},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1306/}
}
TY  - JOUR
AU  - Gayfulin, Dmitry
TI  - Approximation by non-convergents and second Lagrange spectrum
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 1039
EP  - 1051
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1306/
DO  - 10.5802/jtnb.1306
LA  - en
ID  - JTNB_2024__36_3_1039_0
ER  - 
%0 Journal Article
%A Gayfulin, Dmitry
%T Approximation by non-convergents and second Lagrange spectrum
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 1039-1051
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1306/
%R 10.5802/jtnb.1306
%G en
%F JTNB_2024__36_3_1039_0
Gayfulin, Dmitry. Approximation by non-convergents and second Lagrange spectrum. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1039-1051. doi: 10.5802/jtnb.1306

[1] Cusick, Thomas W.; Flahive, Mary E. The Markoff and Lagrange Spectra, Mathematical Surveys and Monographs, 30, American Mathematical Society, 1989, ix+97 pages | Zbl | DOI | MR

[2] Lesca, Jacques Sur les approximations diophantiennes à une dimension, Ph. D. Thesis, Université de Grenoble (France) (1968) (Doctorat d’État)

[3] Lima, Davi; Matheus, Carlos; Moreira, Carlos Gustavo; Vieira, Sandoel 𝕄𝕃 near 3, Mosc. Math. J., Volume 21 (2021) no. 4, pp. 767-788 | Zbl | DOI | MR

[4] Markoff, Andrei A. Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 15 (1879), pp. 381-406 | DOI | MR | Zbl

[5] Markoff, Andrei A. Sur les formes quadratiques binaires indéfinies. II, Math. Ann., Volume 17 (1880), pp. 379-399 | Zbl | DOI

[6] Matheus, Carlos; Moreira, Carlos Gustavo Fractal geometry of the complement of Lagrange spectrum in Markov spectrum, Comment. Math. Helv., Volume 95 (2020) no. 3, pp. 593-633 | Zbl | DOI | MR

[7] Matheus, Carlos; Moreira, Carlos Gustavo Diophantine approximation, Lagrange and Markov spectra, and dynamical Cantor sets, Notices Am. Math. Soc., Volume 68 (2021) no. 8, pp. 1301-1311 | MR | Zbl

[8] Morimoto, Seigo Zur Theorie der Approximation einer irrationalen Zahl durch rationale Zahlen, Tôhoku Math. J., Volume 45 (1938), pp. 177-187 | Zbl

[9] Moshchevitin, Nikolay G. Über die Funktionen des Irrationalitatsmaßes, Analytic and probabilistic methods in number theory. Proceedings of the sixth international conference, Palanga, Lithuania, September 11–17, 2016, Vilnius University Publishing House (2017), pp. 123-148 | Zbl | MR

[10] Rockett, Andrew M.; Szüsz, Peter Continued fractions, World Scientific, 1992, ix+188 pages | Zbl | DOI | MR

[11] Semenyuk, Pavel On a problem related to “second” best approximations to a real number, Mosc. J. Comb. Number Theory, Volume 12 (2023) no. 2, pp. 175-180 | Zbl | DOI | MR

Cité par Sources :