In [4], the authors proved that the zero set of a uniqueness polynomial, satisfying some additional conditions, becomes a unique range set for -functions. They also determined the conditions under which a polynomial becomes a strong uniqueness polynomial for -functions. These results are the improved version of one result of [3]. In this paper we obtain a number of uniqueness theorems for -functions in the extended Selberg class, which significantly extend the results of [3] and [4] in a new direction and improve them in some cases. From our results we can show some classes of unique range sets for -functions which cannot be found by the results of [3] and [4].
Dans [4], les auteurs ont démontré que l’ensemble des zéros d’un polynôme d’unicité, satisfaisant certaines conditions supplémentaires, est un ensemble d’unicité pour les fonctions Ils ont également déterminé les conditions sous lesquelles un polynôme est un polynôme d’unicité forte pour les fonctions Ces résultats sont une version améliorée d’un résultat de [3]. Dans cet article, nous obtenons un certain nombre de théorèmes d’unicité pour les fonctions appartenant à la classe de Selberg étendue, qui étendent, de manière significative, les résultats de [3] et [4] dans une nouvelle direction et les améliorons dans certains cas. En utilisant ces résultats, nous pouvons exhiber certaines classes d’ensembles d’unicité pour les fonctions , qui ne peuvent pas être trouvées avec les résultats de [3] et [4].
Révisé le :
Accepté le :
Publié le :
Keywords: Meromorphic functions, uniqueness, shared sets, small functions, $L$-functions.
Banerjee, Abhijit  1 ; Khoai, Ha Huy  2 ; Kundu, Arpita  1
CC-BY-ND 4.0
@article{JTNB_2024__36_3_967_0,
author = {Banerjee, Abhijit and Khoai, Ha Huy and Kundu, Arpita},
title = {Uniqueness of $L$-functions and meromorphic functions under sharing of sets},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {967--985},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {3},
doi = {10.5802/jtnb.1302},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1302/}
}
TY - JOUR AU - Banerjee, Abhijit AU - Khoai, Ha Huy AU - Kundu, Arpita TI - Uniqueness of $L$-functions and meromorphic functions under sharing of sets JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 967 EP - 985 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1302/ DO - 10.5802/jtnb.1302 LA - en ID - JTNB_2024__36_3_967_0 ER -
%0 Journal Article %A Banerjee, Abhijit %A Khoai, Ha Huy %A Kundu, Arpita %T Uniqueness of $L$-functions and meromorphic functions under sharing of sets %J Journal de théorie des nombres de Bordeaux %D 2024 %P 967-985 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1302/ %R 10.5802/jtnb.1302 %G en %F JTNB_2024__36_3_967_0
Banerjee, Abhijit; Khoai, Ha Huy; Kundu, Arpita. Uniqueness of $L$-functions and meromorphic functions under sharing of sets. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 967-985. doi: 10.5802/jtnb.1302
[1] Strong uniqueness polynomials: the complex case, Complex Variables, Theory Appl., Volume 49 (2004) no. 1, pp. 25-54 | MR | Zbl
[2] A simple proof and strengthening of a uniqueness theorem for -functions, Can. Math. Bull., Volume 59 (2016) no. 1, pp. 119-122 | Zbl | MR
[3] Uniqueness theorems for Dirichlet series, Bull. Aust. Math. Soc., Volume 91 (2015) no. 3, pp. 389-399 | MR | Zbl
[4] Determining an -function in the extended Selberg class by its preimages of subsets, Ramanujan J., Volume 58 (2022) no. 1, pp. 253-267 | DOI | Zbl | MR
[5] A remark on the uniqueness of the Dirichlet series with a Riemann-type function equation, Adv. Math., Volume 231 (2012) no. 5, pp. 2484-2490 | MR | Zbl
[6] Weighted value sharing and uniqueness of meromorphic functions, Complex Variables, Theory Appl., Volume 46 (2001) no. 3, pp. 241-253 | MR | Zbl
[7] A result on value distribution of -functions, Proc. Am. Math. Soc., Volume 138 (2010) no. 6, pp. 2071-2077 | MR | Zbl
[8] Results on value distribution of -functions, Math. Nachr., Volume 286 (2013) no. 13, pp. 1326-1336 | MR | Zbl
[9] Value distribution of -functions concerning sharing sets, Filomat, Volume 30 (2016) no. 14, pp. 3795-3806 | Zbl | MR
[10] On the Nevanlinna characteristics of some meromorphic functions, Theory of functions, functional analysis and their applications. Vol. 14, Izd-vo Khar’kovsk, 1971, pp. 83-87
[11] Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi conference on analytic number theory, held at Maiori, Amalfi, Italy, from 25 to 29 September, 1989, Universitá di Salerno, 1992, pp. 367-385 | Zbl
[12] Value Distribution of -Functions, Lecture Notes in Mathematics, 1877, Springer, 2007, vii+317 pages | MR | Zbl
[13] The second main theorem for small functions and related problems, Acta Math., Volume 192 (2004) no. 2, pp. 225-294 | DOI | MR | Zbl
[14] Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications (Dordrecht), 557, Kluwer Academic Publishers, 2003, viii+569 pages | DOI | MR
[15] Unicity theorems for meromorphic or entire functions III, Bull. Aust. Math. Soc., Volume 53 (1996) no. 1, pp. 71-82 | MR | Zbl
[16] Value distribution of -functions and uniqueness questions of F. Gross, Lith. Math. J., Volume 58 (2018) no. 2, pp. 249-262 | DOI | MR | Zbl
[17] The uniqueness of meromorphic functions with their derivative, Kodai Math. J., Volume 32 (1998) no. 2, pp. 179-184 | MR | Zbl
Cité par Sources :





