The theory of Kolyvagin systems for p=3
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 919-946

In this paper, we consider the theory of Kolyvagin systems when p=3 and show that this theory still works in a certain setting that has been excluded in previous studies. As an application of this result, we prove a conjecture of Kurihara concerning modular symbols in the case p=3.

Dans cet article, nous considérons la théorie des systèmes de Kolyvagin lorsque p=3 et montrons que cette théorie fonctionne toujours dans un certain cadre qui a été exclu dans les études précédentes. Comme application de ce résultat, nous prouvons une conjecture de Kurihara concernant les symboles modulaires dans le cas p=3.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1300
Classification : 11R23, 11G05, 11R34, 11S25
Keywords: Kolyvagin systems, modular symbols, Kurihara conjecture

Sakamoto, Ryotaro  1

1 Department of Mathematics University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571, Japan
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_919_0,
     author = {Sakamoto, Ryotaro},
     title = {The theory of {Kolyvagin} systems for $p=3$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {919--946},
     year = {2024},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     doi = {10.5802/jtnb.1300},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1300/}
}
TY  - JOUR
AU  - Sakamoto, Ryotaro
TI  - The theory of Kolyvagin systems for $p=3$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 919
EP  - 946
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1300/
DO  - 10.5802/jtnb.1300
LA  - en
ID  - JTNB_2024__36_3_919_0
ER  - 
%0 Journal Article
%A Sakamoto, Ryotaro
%T The theory of Kolyvagin systems for $p=3$
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 919-946
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1300/
%R 10.5802/jtnb.1300
%G en
%F JTNB_2024__36_3_919_0
Sakamoto, Ryotaro. The theory of Kolyvagin systems for $p=3$. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 919-946. doi: 10.5802/jtnb.1300

[1] Burns, David; Sakamoto, Ryotaro; Sano, Takamichi On the theory of higher rank Euler, Kolyvagin and Stark systems, II | arXiv

[2] Burns, David; Sano, Takamichi On the theory of higher rank Euler, Kolyvagin and Stark systems, Int. Math. Res. Not., Volume 2021 (2021) no. 13, pp. 10118-10206 | DOI | MR | Zbl

[3] Büyükboduk, Kâzim Kolyvagin systems of Stark units, J. Reine Angew. Math., Volume 631 (2009), pp. 85-107 | DOI | MR | Zbl

[4] Büyükboduk, Kâzim Stark units and the main conjectures for totally real fields, Compos. Math., Volume 145 (2009) no. 5, pp. 1163-1195 | DOI | MR | Zbl

[5] Büyükboduk, Kâzim Λ-adic Kolyvagin systems, Int. Math. Res. Not., Volume 2011 (2011) no. 14, pp. 3141-3206 | DOI | MR | Zbl

[6] Büyükboduk, Kâzim Stickelberger elements and Kolyvagin systems, Nagoya Math. J., Volume 203 (2011), pp. 123-173 | DOI | MR | Zbl

[7] Büyükboduk, Kâzim Main conjectures for CM fields and a Yager-type theorem for Rubin-Stark elements, Int. Math. Res. Not., Volume 2014 (2014) no. 21, pp. 5832-5873 | DOI | MR | Zbl

[8] Büyükboduk, Kâzim Deformations of Kolyvagin systems, Ann. Math. Qué., Volume 40 (2016) no. 2, pp. 251-302 | DOI | MR | Zbl

[9] Büyükboduk, Kâzim On the Iwasawa theory of CM fields for supersingular primes, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 927-966 | DOI | MR | Zbl

[10] Büyükboduk, Kâzim; Lei, Antonio Coleman-adapted Rubin-Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 6, pp. 1338-1378 | DOI | MR | Zbl

[11] Elkies, Noam Elliptic curves with 3-adic Galois representation surjective mod 3 but not mod 9 (2006) | arXiv

[12] Kato, Kazuya p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | MR | Numdam | Zbl

[13] Kim, Chan-Ho The structure of Selmer groups and the Iwasawa main conjecture for elliptic curves (2022) | arXiv

[14] Kurihara, Masato The structure of Selmer groups of elliptic curves and modular symbols, Iwasawa theory 2012 (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2014, pp. 317-356 | MR | DOI | Zbl

[15] Manin, Ju. I. Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 19-66 | MR | Zbl

[16] Matsumura, Hideyuki Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages (translated from the Japanese by M. Reid) | MR

[17] Mazur, Barry; Rubin, Karl Kolyvagin systems, Mem. Am. Math. Soc., Volume 168 (2004) no. 799, p. viii+96 | DOI | MR | Zbl

[18] Mazur, Barry; Rubin, Karl Controlling Selmer groups in the higher core rank case, J. Théor. Nombres Bordeaux, Volume 28 (2016) no. 1, pp. 145-183 | MR | DOI | Numdam | Zbl

[19] Mazur, Barry; Rubin, Karl Refined class number formulas for 𝔾 m , J. Théor. Nombres Bordeaux, Volume 28 (2016) no. 1, pp. 185-211 | MR | DOI | Zbl

[20] Reverter, Amadeu; Vila, Núria Images of mod p Galois representations associated to elliptic curves, Can. Math. Bull., Volume 44 (2001) no. 3, pp. 313-322 | DOI | MR | Zbl

[21] Rubin, Karl Euler systems. (Hermann Weyl Lectures), Annals of Mathematics Studies, 147, Princeton University Press, 2000, xii+227 pages | DOI | MR

[22] Sakamoto, Ryotaro Stark systems over Gorenstein local rings, Algebra Number Theory, Volume 12 (2018) no. 10, pp. 2295-2326 | DOI | MR | Zbl

[23] Sakamoto, Ryotaro On the theory of higher rank Euler, Kolyvagin and Stark systems: a research announcement, RIMS Kôkyûroku Bessatsu, Volume B83 (2020), pp. 141-159 | MR | Zbl

[24] Sakamoto, Ryotaro On the theory of Kolyvagin systems of rank 0, J. Théor. Nombres Bordeaux, Volume 33 (2021) no. 3, pp. 1077-1102 | DOI | MR | Numdam | Zbl

[25] Sakamoto, Ryotaro p-Selmer group and modular symbols, Doc. Math., Volume 27 (2022), pp. 1891-1922 | MR | DOI | Zbl

[26] Skinner, Christopher; Urban, Eric The Iwasawa main conjectures for GL 2 , Invent. Math., Volume 195 (2014) no. 1, pp. 1-277 | DOI | MR | Zbl

[27] Swinnerton-Dyer, H. P. F. On l-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 350, Springer, 1973, pp. 1-55 | MR | Zbl

Cité par Sources :