For any number field, we prove that there exists a stacky curve of genus defined over the ring of its integers violating the local-global principle for integral points.
Pour un corps de nombres quelconque, nous prouvons qu’il existe un champs algébrique de Deligne–Mumford propre, lisse, géométriquement connexe de dimension et de genre , défini sur l’anneau des entiers du corps et violant le principe local-global pour les points entiers.
Révisé le :
Accepté le :
Publié le :
Keywords: stacky curves, local points, integral points, local-global principle for integral points
Wu, Han  1 ; Lv, Chang  2
CC-BY-ND 4.0
@article{JTNB_2024__36_3_835_0,
author = {Wu, Han and Lv, Chang},
title = {Genus one half stacky curves violating the local-global principle},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {835--841},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {3},
doi = {10.5802/jtnb.1297},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1297/}
}
TY - JOUR AU - Wu, Han AU - Lv, Chang TI - Genus one half stacky curves violating the local-global principle JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 835 EP - 841 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1297/ DO - 10.5802/jtnb.1297 LA - en ID - JTNB_2024__36_3_835_0 ER -
%0 Journal Article %A Wu, Han %A Lv, Chang %T Genus one half stacky curves violating the local-global principle %J Journal de théorie des nombres de Bordeaux %D 2024 %P 835-841 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1297/ %R 10.5802/jtnb.1297 %G en %F JTNB_2024__36_3_835_0
Wu, Han; Lv, Chang. Genus one half stacky curves violating the local-global principle. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 835-841. doi: 10.5802/jtnb.1297
[1] The local-global principle for integral points on stacky curves, J. Algebr. Geom., Volume 31 (2022) no. 4, pp. 773-782 | Zbl | DOI | MR
[2] A topology on points on stacks, Ph. D. Thesis, Massachusetts Institute of Technology (USA) (2020)
[3] On the equations and , Bull. Lond. Math. Soc., Volume 27 (1995) no. 6, pp. 513-543 | Zbl | MR
[4] Quotients by groupoids, Ann. Math., Volume 145 (1995) no. 1, pp. 193-213 | Zbl | DOI
[5] Algebraic spaces and stacks, Colloquium Publications, 62, American Mathematical Society, 2016, xi+298 pages | Zbl | MR
[6] The Brauer–Manin obstruction for subvarieties of abelian varieties over function fields, Ann. Math., Volume 171 (2010) no. 1, pp. 511-532 | Zbl | DOI
[7] A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, 1973, viii+115 pages | Zbl | DOI | MR
[8] The canonical ring of a stacky curve, Memoirs of the American Mathematical Society, 1362, American Mathematical Society, 2022, v+144 pages | Zbl
[9] Non-invariance of the Brauer–Manin obstruction for surfaces (2021) | arXiv
[10] On genus one curves violating the local-global principle, J. Number Theory, Volume 242 (2023), pp. 235-243 | Zbl | MR
Cité par Sources :





