An important ingredient in the Ferrero–Washington proof of the vanishing of cyclotomic -invariant for Kubota–Leopoldt -adic -functions is an equidistribution result which they established using the Weyl criterion. The purpose of our manuscript is to provide an alternative proof by adopting a dynamical approach. A key ingredient to our methods is studying an ergodic skew-product map on , which is then suitably identified as a factor of the -sided Bernoulli shift on the sample space .
Un ingrédient important de la preuve de Ferrero et Washington de la nullité de l’invariant cyclotomique pour les fonctions -adiques de Kubota–Leopoldt est un résultat d’équidistribution qu’ils ont établi en utilisant le critère de Weyl. Le but de notre manuscrit est de fournir une preuve alternative en adoptant une approche dynamique. L’une des idées clés de notre méthode est l’étude d’une application semi-directe ergodique sur , qui est ensuite identifiée de manière appropriée comme un facteur du décalage de Bernoulli bilatéral sur l’espace .
Révisé le :
Accepté le :
Publié le :
Keywords: Iwasawa theory, Ergodic theory, Bernoulli shifts, Equidistribution modulo $1$
Lee, Jungwon  1 ; Palvannan, Bharathwaj  2
CC-BY-ND 4.0
@article{JTNB_2024__36_3_805_0,
author = {Lee, Jungwon and Palvannan, Bharathwaj},
title = {An ergodic approach towards an equidistribution result of {Ferrero{\textendash}Washington}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {805--833},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {3},
doi = {10.5802/jtnb.1296},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1296/}
}
TY - JOUR AU - Lee, Jungwon AU - Palvannan, Bharathwaj TI - An ergodic approach towards an equidistribution result of Ferrero–Washington JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 805 EP - 833 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1296/ DO - 10.5802/jtnb.1296 LA - en ID - JTNB_2024__36_3_805_0 ER -
%0 Journal Article %A Lee, Jungwon %A Palvannan, Bharathwaj %T An ergodic approach towards an equidistribution result of Ferrero–Washington %J Journal de théorie des nombres de Bordeaux %D 2024 %P 805-833 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1296/ %R 10.5802/jtnb.1296 %G en %F JTNB_2024__36_3_805_0
Lee, Jungwon; Palvannan, Bharathwaj. An ergodic approach towards an equidistribution result of Ferrero–Washington. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 805-833. doi: 10.5802/jtnb.1296
[1] Convergence of probability measures, Wiley Series in Probability and Statistics, John Wiley & Sons, 1999, x+277 pages (A Wiley-Interscience Publication) | DOI | MR
[2] Probability and measure, Wiley Series in Probability and Statistics, John Wiley & Sons, 2012, xviii+624 pages (Anniversary edition [of MR1324786], with a foreword by Steve Lalley and a brief biography of Billingsley by Steve Koppes) | MR
[3] Measure theory. Vol. I, II, Springer, 2007, xviii+500; xiv+575 pages | DOI | MR
[4] Markov maps associated with Fuchsian groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 153-170 | MR | DOI | Numdam | Zbl
[5] Mazur’s conjecture on higher Heegner points, Invent. Math., Volume 148 (2002) no. 3, pp. 495-523 | DOI | MR | Zbl
[6] Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, 259, Springer, 2011 | DOI | MR
[7] The Iwasawa invariant vanishes for abelian number fields, Ann. Math. (2), Volume 109 (1979) no. 2, pp. 377-395 | DOI | MR | Zbl
[8] Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, Princeton University Press, 1981, xi+203 pages | MR | DOI
[9] On some invariants of cyclotomic fields, Am. J. Math., Volume 80 (1958), pp. 773-783 erratum in ibid 81 (1958), p. 280 | DOI | MR | Zbl
[10] On the theory of cyclotomic fields, Ann. Math. (2), Volume 70 (1959), pp. 530-561 | DOI | Zbl
[11] Lectures on -adic -functions, Annals of Mathematics Studies, 74, Princeton University Press; University of Tokyo Press, 1972 | DOI | MR
[12] Dynamics of continued fractions and distribution of modular symbols (2019) | arXiv
[13] -adic foliation and equidistribution, Isr. J. Math., Volume 122 (2001), pp. 29-42 | DOI | MR | Zbl
[14] Arithmetic conjectures suggested by the statistical behavior of modular symbols, Exp. Math., Volume 32 (2023) no. 4, pp. 657-672 | Zbl | MR | DOI
[15] A course in -adic analysis, Graduate Texts in Mathematics, 198, Springer, 2000 | DOI | MR
[16] Real analysis, Macmillan Publishing Company, 1988, xx+444 pages | MR
[17] On the -invariant of the -transform of a rational function, Invent. Math., Volume 75 (1984) no. 2, pp. 273-282 | DOI | MR
[18] Uniform distribution of Heegner points, Invent. Math., Volume 148 (2002) no. 1, pp. 1-46 | DOI | MR | Zbl
[19] Special values of anticyclotomic -functions, Duke Math. J., Volume 116 (2003) no. 2, pp. 219-261 | DOI | MR | Zbl
[20] Special values of -functions modulo , International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 501-514 | MR | Zbl
[21] An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer, 1982, ix+250 pages | MR | DOI
[22] On Sinnott’s proof of the vanishing of the Iwasawa invariant , Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press Inc., 1989, pp. 457-462 | DOI | MR | Zbl
Cité par Sources :





