Inspired by Beilinson conjectures, we provide a construction of classes in the middle degree plus one motivic cohomology of the Siegel Shimura variety of almost any dimension. We compute their image by Beilinson’s higher regulator in terms of Rankin–Selberg type automorphic integrals. Our construction generalizes the one for in [21] and for in [4]. For Siegel varieties associated to small genus symplectic groups, we also show how these integrals unfold.
Inspirés par les conjectures de Beilinson, nous construisons des classes en degré moitié plus un dans la cohomologie motivique des variétés modulaires de Siegel de presque toute dimension. Nous calculons leur image par le régulateur supérieur de Beilinson en termes d’intégrales adéliques de type Rankin–Selberg. Notre construction généralise celle pour de [21] et celle pour de [4]. Dans le cas de variétés de Siegel associées à des groupes symplectiques de petit genre, nous démontrons également que ces intégrales se déploient.
Révisé le :
Accepté le :
Publié le :
Keywords: Siegel Shimura varieties, Beilinson conjectures, Rankin–Selberg integrals
Cauchi, Antonio  1 ; Lemma, Francesco  2 ; Jacinto, Joaquín Rodrigues  3
CC-BY-ND 4.0
@article{JTNB_2024__36_3_767_0,
author = {Cauchi, Antonio and Lemma, Francesco and Jacinto, Joaqu{\'\i}n Rodrigues},
title = {On higher regulators of {Siegel} varieties},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {767--804},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {3},
doi = {10.5802/jtnb.1295},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1295/}
}
TY - JOUR AU - Cauchi, Antonio AU - Lemma, Francesco AU - Jacinto, Joaquín Rodrigues TI - On higher regulators of Siegel varieties JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 767 EP - 804 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1295/ DO - 10.5802/jtnb.1295 LA - en ID - JTNB_2024__36_3_767_0 ER -
%0 Journal Article %A Cauchi, Antonio %A Lemma, Francesco %A Jacinto, Joaquín Rodrigues %T On higher regulators of Siegel varieties %J Journal de théorie des nombres de Bordeaux %D 2024 %P 767-804 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1295/ %R 10.5802/jtnb.1295 %G en %F JTNB_2024__36_3_767_0
Cauchi, Antonio; Lemma, Francesco; Jacinto, Joaquín Rodrigues. On higher regulators of Siegel varieties. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 767-804. doi: 10.5802/jtnb.1295
[1] Stable real cohomology of arithmetic groups II, Manifolds and Lie Groups: Papers in Honor of Yozo Matsushima (Progress in Mathematics), Volume 14, Birkhäuser (1980), pp. 21-55
[2] Continuous cohomology, discrete subgroups, and representations of reductive groups, Mathematical Surveys and Monographs, 67, American Mathematical Society, 2013 | MR
[3] A logarithmic Dolbeault complex, Compos. Math., Volume 92 (1994) no. 1, pp. 61-86 | MR | Numdam | Zbl
[4] Tempered currents and Deligne cohomology of Shimura varieties, with an application to , Camb. J. Math., Volume 12 (2024) no. 4, pp. 831-902 | Zbl | DOI | MR
[5] Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu, Volume 6 (2007) no. 1, pp. 1-172 | MR | Zbl
[6] Algebraic cycles and functorial lifts from to (to appear in Algebra Number Theory) | arXiv
[7] Norm-compatible systems of Galois cohomology classes for , Doc. Math., Volume 25 (2020), pp. 911-954 | Zbl | DOI | MR
[8] Nilpotent orbits in semisimple Lie algebra: an introduction, CRC Press, 1993 | MR
[9] Théorie de Hodge II, Publ. Math., Inst. Hautes Étud. Sci., Volume 40 (1971), pp. 5-57 | DOI | Numdam | MR | Zbl
[10] The Beĭlinson conjectures, -functions and arithmetic (Durham, 1989) (London Mathematical Society Lecture Note Series), Volume 153, Cambridge University Press, 1991, pp. 173-209 | DOI | MR | Zbl
[11] Deligne–Beilinson Cohomology, Beilinson’s conjectures on special values of -functions (Rapoport, Michael; Schneider, Peter; Schappacher, Norbert, eds.) (Perspectives in Mathematics), Volume 4, Academic Press Inc. (1988), pp. 43-91 | DOI | Zbl
[12] Towards a classification of global integral constructions and functorial liftings using the small representations method, Adv. Math., Volume 254 (2014), pp. 157-186 | DOI | MR | Zbl
[13] On Fourier coefficients of automorphic forms of symplectic groups, Manuscr. Math., Volume 111 (2003) no. 1, pp. 1-16 | DOI | MR
[14] The descent map from automorphic representations of to classical groups, World Scientific, 2011 | DOI | MR
[15] Functorial properties of toroidal compactifications of locally symmetric varieties, Proc. Lond. Math. Soc. (3), Volume 59 (1989) no. 1, pp. 1-22 | DOI | MR | Zbl
[16] -functions and periods of polarized regular motives, J. Reine Angew. Math., Volume 483 (1997), pp. 75-161 | Zbl | MR
[17] Deligne homology, Hodge--conjecture, and motives, Beilinson’s conjectures on special values of -functions (Rapoport, Michael; Schneider, Peter; Schappacher, Norbert, eds.) (Perspectives in Mathematics), Volume 4, Academic Press Inc. (1988), pp. 305-372 | DOI | Zbl
[18] -adic Hodge theory and values of zeta functions of modular forms, -adic cohomology and arithmetic applications (III). (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | MR | Numdam | Zbl
[19] Representation theory of semisimple groups: an overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, 2001 | MR
[20] Galois representations for general symplectic groups, J. Eur. Math. Soc., Volume 25 (2023) no. 1, pp. 75-152 | DOI | MR | Zbl
[21] On higher regulators of Siegel threefolds II: the connection to the special value, Compos. Math., Volume 153 (2017) no. 5, pp. 889-946 | DOI | MR | Zbl
[22] Euler systems for , J. Eur. Math. Soc., Volume 24 (2022) no. 2, pp. 669-733 | DOI | MR | Zbl
[23] A class number formula for Picard modular surfaces (2017) | arXiv
[24] The spin -function on via a non-unique model, Am. J. Math., Volume 140 (2018) no. 3, pp. 753-788 | DOI | MR | Zbl
[25] The sum of the squares of the parts of a partition, and some related questions, J. Number Theory, Volume 33 (1989) no. 2, pp. 199-208 | DOI | MR | Zbl
Cité par Sources :





