Automorphy of mod 2 Galois representations associated to certain genus 2 curves over totally real fields
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 637-660

Given a genus two hyperelliptic curve C over a totally real field F, we show that the mod 2 Galois representation ρ ¯ C,2 :Gal(F ¯/F)GSp 4 (𝔽 2 ) attached to C is residually automorphic when the image of ρ ¯ C,2 is isomorphic to S 5 and it is also a transitive subgroup under a fixed isomorphism GSp 4 (𝔽 2 )S 6 . More precisely, there exists a Hilbert–Siegel Hecke eigen cusp form h on GSp 4 (𝔸 F ) of parallel weight two whose mod 2 Galois representation ρ ¯ h,2 is isomorphic to ρ ¯ C,2 .

Soit C une courbe hyperelliptique de genre 2 sur un corps totalement réel F. Nous montrons que la représentation galoisienne modulo 2, ρ ¯ C,2 :Gal(F ¯/F)GSp 4 (𝔽 2 ), associée à C est résiduellement automorphe lorsque l’image de ρ ¯ C,2 est un groupe isomorphe à S 5 et transitif par rapport à un isomorphisme fixé GSp 4 (𝔽 2 )S 6 . Plus précisément, il existe une forme parabolique h de Hilbert–Siegel sur GSp 4 (𝔸 F ) de poids parallèle 2, propre pour les opérateurs de Hecke, dont la représentation galoisienne ρ ¯ h,2 est isomorphe à ρ ¯ C,2 .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1291
Classification : 11F, 11F33, 11F80
Keywords: genus 2 curves, mod 2 Galois representations, automorphy

Ghitza, Alexandru  1   ; Yamauchi, Takuya  2

1 School of Mathematics and Statistics University of Melbourne Parkville, VIC 3010, Australia
2 Mathematical Inst. Tohoku Univ. 6-3,Aoba, Aramaki, Aoba-Ku Sendai 980-8578, Japan
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_637_0,
     author = {Ghitza, Alexandru and Yamauchi, Takuya},
     title = {Automorphy of mod~2 {Galois} representations associated to certain genus 2 curves over totally real fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {637--660},
     year = {2024},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     doi = {10.5802/jtnb.1291},
     zbl = {07948980},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1291/}
}
TY  - JOUR
AU  - Ghitza, Alexandru
AU  - Yamauchi, Takuya
TI  - Automorphy of mod 2 Galois representations associated to certain genus 2 curves over totally real fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 637
EP  - 660
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1291/
DO  - 10.5802/jtnb.1291
LA  - en
ID  - JTNB_2024__36_2_637_0
ER  - 
%0 Journal Article
%A Ghitza, Alexandru
%A Yamauchi, Takuya
%T Automorphy of mod 2 Galois representations associated to certain genus 2 curves over totally real fields
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 637-660
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1291/
%R 10.5802/jtnb.1291
%G en
%F JTNB_2024__36_2_637_0
Ghitza, Alexandru; Yamauchi, Takuya. Automorphy of mod 2 Galois representations associated to certain genus 2 curves over totally real fields. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 637-660. doi: 10.5802/jtnb.1291

[1] Barnet-Lamb, Tom; Geraghty, David; Harris, Michael; Taylor, Richard A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., Volume 47 (2011) no. 1, pp. 29-98 | Zbl | DOI | MR

[2] Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise Algorithms in real algebraic geometry, Algorithms and Computation in Mathematics, 10, Springer, 2006, x+662 pages | MR

[3] Bellaïche, Joël; Chenevier, Gaëtan The sign of Galois representations attached to automorphic forms for unitary groups, Compos. Math., Volume 147 (2011) no. 5, pp. 1337-1352 | Zbl | DOI | MR

[4] Blasius, Don; Rogawski, Jonathan D. Motives for Hilbert modular forms, Invent. Math., Volume 114 (1993) no. 1, pp. 55-87 | Zbl | DOI | MR

[5] Booker, Andrew R.; Sijsling, Jeroen; Sutherland, Andrew V.; Voight, John; Yasaki, Dan A database of genus-2 curves over the rational numbers, LMS J. Comput. Math., Volume 19 (2016), pp. 235-254 | Zbl | DOI | MR

[6] Bosma, Wieb; Cannon, John; Playoust, Catherine The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | Zbl | DOI | MR

[7] Boxer, George; Calegari, Frank; Gee, Toby; Pilloni, Vincent Abelian surfaces over totally real fields are potentially modular, Publ. Math., Inst. Hautes Étud. Sci., Volume 134 (2021), pp. 153-501 | Zbl | DOI | MR

[8] Brumer, Armand; Kramer, Kenneth Paramodular abelian varieties of odd conductor, Trans. Am. Math. Soc., Volume 366 (2014) no. 5, pp. 2463-2516 | Zbl | DOI | MR

[9] Brumer, Armand; Pacetti, Ariel; Poor, Cris; Tornaría, Gonzalo; Voight, John; Yuen, David S. On the paramodularity of typical abelian surfaces, Algebra Number Theory, Volume 13 (2019) no. 5, pp. 1145-1195 | Zbl | DOI | MR

[10] Buzzard, Kevin; Diamond, Fred; Jarvis, Frazer On Serre’s conjecture for mod Galois representations over totally real fields, Duke Math. J., Volume 155 (2010) no. 1, pp. 105-161 | Zbl | DOI | MR

[11] Calegari, Frank The Artin conjecture for some S 5 -extensions, Math. Ann., Volume 356 (2013) no. 1, pp. 191-207 | Zbl | DOI | MR

[12] Deligne, Pierre; Serre, Jean-Pierre Formes modulaires de poids 1, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 507-530 | DOI | Numdam | Zbl | MR

[13] Dembélé, Lassina Explicit computations of Hilbert modular forms on (5), Exp. Math., Volume 14 (2005) no. 4, pp. 457-466 | Zbl | DOI | MR

[14] Dimitrov, Mladen Galois representations modulo p and cohomology of Hilbert modular varieties, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005) no. 4, pp. 505-551 | Zbl | Numdam | DOI | MR

[15] Dokchitser, Tim; Doris, Christopher 3-torsion and conductor of genus 2 curves, Math. Comput., Volume 88 (2019) no. 318, pp. 1913-1927 | Zbl | DOI | MR

[16] Gan, Wee Teck; Takeda, Shuichiro The local Langlands conjecture for GSp (4), Ann. Math., Volume 173 (2011) no. 3, pp. 1841-1882 | Zbl | DOI | MR

[17] Gee, Toby; Taïbi, Olivier Arthur’s multiplicity formula for GSp 4 and restriction to Sp 4 , J. Éc. Polytech., Math., Volume 6 (2019), pp. 469-535 | Zbl | DOI | MR

[18] Getz, Jayce R. An approach to nonsolvable base change and descent, J. Ramanujan Math. Soc., Volume 27 (2012) no. 2, pp. 143-211 | Zbl | MR

[19] Goins, Edray Herber Elliptic curves and icosahedral Galois representations, ProQuest LLC, 1999, 110 pages Thesis (Ph.D.)–Stanford University | MR

[20] Jarvis, Frazer On Galois representations associated to Hilbert modular forms, J. Reine Angew. Math., Volume 491 (1997), pp. 199-216 | Zbl | DOI | MR

[21] Jensen, Christian U.; Ledet, Arne; Yui, Noriko Generic polynomials. Constructive aspects of the inverse Galois problem, Mathematical Sciences Research Institute Publications, 45, Cambridge University Press, 2002, ix+258 pages | MR | Zbl

[22] Johnson-Leung, Jennifer; Roberts, Brooks Siegel modular forms of degree two attached to Hilbert modular forms, J. Number Theory, Volume 132 (2012) no. 4, pp. 543-564 | Zbl | DOI | MR

[23] Kisin, Mark Modularity of 2-adic Barsotti-Tate representations, Invent. Math., Volume 178 (2009) no. 3, pp. 587-634 | Zbl | DOI | MR

[24] Kisin, Mark Moduli of finite flat group schemes, and modularity, Ann. Math., Volume 170 (2009) no. 3, pp. 1085-1180 | Zbl | DOI | MR

[25] Klute, Annette Icosahedral Galois extensions and elliptic curves, Manuscr. Math., Volume 93 (1997) no. 3, pp. 301-324 | Zbl | DOI | MR

[26] The LMFDB Collaboration The L-functions and modular forms database, https://www.lmfdb.org, 2023 (accessed 1 October 2020)

[27] Mok, Chung Pang Galois representations attached to automorphic forms on GL 2 over CM fields, Compos. Math., Volume 150 (2014) no. 4, pp. 523-567 | Zbl | DOI | MR

[28] Pilloni, Vincent; Stroh, Benoît Surconvergence, ramification et modularité, Arithmétique p-adique des formes de Hilbert (Astérisque), Volume 382, Société Mathématique de France, 2016, pp. 195-266 | Zbl | MR

[29] Ramakrishnan, Dinakar Modularity of solvable Artin representations of GO (4)-type, Int. Math. Res. Not., Volume 2002 (2002) no. 1, pp. 1-54 | Zbl | DOI | MR

[30] Roberts, Brooks Global L-packets for GSp (2) and theta lifts, Doc. Math., Volume 6 (2001), pp. 247-314 | DOI | Zbl | MR

[31] Rogawski, Jonathan D.; Tunnell, Jerrold B. On Artin L-functions associated to Hilbert modular forms of weight one, Invent. Math., Volume 74 (1983) no. 1, pp. 1-42 | Zbl | DOI | MR

[32] The Sage Developers SageMath, the Sage Mathematics Software System (Version 10.0) (2023) (https://www.sagemath.org)

[33] Sairaiji, Fumio On congruences between the coefficients of two L-series which are related to a hyperelliptic curve over Q, Osaka J. Math., Volume 37 (2000) no. 4, pp. 789-799 | Zbl | MR

[34] Sasaki, Shu Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms, Invent. Math., Volume 215 (2019) no. 1, pp. 171-264 | Zbl | DOI | MR

[35] Serre, Jean-Pierre Modular forms of weight one and Galois representations, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press Inc., 1977, pp. 193-268 | MR

[36] Silverman, Joseph H. The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009, xx+513 pages | DOI | MR

[37] Skinner, Christopher A note on the p-adic Galois representations attached to Hilbert modular forms, Doc. Math., Volume 14 (2009), pp. 241-258 | DOI | Zbl | MR

[38] Sorensen, Claus M. Galois representations attached to Hilbert-Siegel modular forms, Doc. Math., Volume 15 (2010), pp. 623-670 | Zbl | DOI | MR

[39] Sutherland, Andrew V. Genus 2 curves over , 2016 (https://math.mit.edu/~drew/genus2curves.html, accessed 1 October 2020)

[40] Taylor, Richard On the meromorphic continuation of degree two L-functions, Doc. Math., Volume 2006 (2006), pp. 729-779 | Zbl | MR

[41] Tsuzuki, Nobuo; Yamauchi, Takuya Automorphy of mod 2 Galois representations associated to the quintic Dwork family and reciprocity of some quintic trinomials (2022) | arXiv

[42] Tunnell, Jerrold B. Artin’s conjecture for representations of octahedral type, Bull. Am. Math. Soc., Volume 5 (1981) no. 2, pp. 173-175 | Zbl | DOI | MR

[43] Wagner, Ascher The faithful linear representation of least degree of S n and A n over a field of characteristic 2., Math. Z., Volume 151 (1976) no. 2, pp. 127-137 | Zbl | DOI | MR

[44] Weiss, Ariel On the images of Galois representations attached to low weight Siegel modular forms, J. Lond. Math. Soc., Volume 106 (2022) no. 1, pp. 358-387 | DOI | Zbl | MR

[45] Wong, Peng-Jie Applications of group theory to conjectures of Artin and Langlands, Int. J. Number Theory, Volume 14 (2018) no. 3, pp. 881-898 | Zbl | DOI | MR

Cité par Sources :