Let be a number field of degree and fix multiplicatively independent that fulfil some technical requirements, which can be vastly simplified to -linearly independence, given Schanuel’s conjecture. We then consider the twisted Thue equation
and prove that it has only finitely many solutions in with and , all of which are effectively computable.
Soit un corps de nombres de degré On fixe éléments multiplicativement indépendants et remplissant certaines conditions techniques, qui se réduisent à une condition d’indépendance -linéaire si on admet la conjecture de Schanuel. Nous considérons l’équation de Thue tordue
et prouvons qu’il n’existe qu’un nombre fini de solutions dans avec et . Ces solutions sont effectivement calculables.
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1290
Keywords: Multiplicative and norm form equations, Exponential Diophantine equations
Hilgart, Tobias  1 ; Ziegler, Volker  1
CC-BY-ND 4.0
@article{JTNB_2024__36_2_621_0,
author = {Hilgart, Tobias and Ziegler, Volker},
title = {Twisted {Thue} equations with multiple exponents in fixed number fields},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {621--635},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {2},
doi = {10.5802/jtnb.1290},
mrnumber = {4830944},
zbl = {07948979},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1290/}
}
TY - JOUR AU - Hilgart, Tobias AU - Ziegler, Volker TI - Twisted Thue equations with multiple exponents in fixed number fields JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 621 EP - 635 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1290/ DO - 10.5802/jtnb.1290 LA - en ID - JTNB_2024__36_2_621_0 ER -
%0 Journal Article %A Hilgart, Tobias %A Ziegler, Volker %T Twisted Thue equations with multiple exponents in fixed number fields %J Journal de théorie des nombres de Bordeaux %D 2024 %P 621-635 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1290/ %R 10.5802/jtnb.1290 %G en %F JTNB_2024__36_2_621_0
Hilgart, Tobias; Ziegler, Volker. Twisted Thue equations with multiple exponents in fixed number fields. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 621-635. doi: 10.5802/jtnb.1290
[1] Logarithmic forms and group varieties, J. Reine Angew. Math., Volume 442 (1993), pp. 19-62 | DOI | Zbl | MR
[2] On the Thue–Siegel–Dyson theorem, Acta Math., Volume 148 (1982), pp. 255-296 | Zbl | DOI
[3] Bounds for the solutions of Thue–Mahler equations and norm form equations, Acta Arith., Volume 74 (1996) no. 3, pp. 273-292 | Zbl | DOI | MR
[4] Introduction to Transcendental Numbers, Addison-Wesley Publishing Group, 1966 | MR
[5] Familles d’équations de Thue-Mahler n’ayant que des solutions triviales, Acta Arith., Volume 155 (2012) no. 2, pp. 117-138 | DOI | Zbl | MR
[6] Solving effectively some families of Thue Diophantine equations, Mosc. J. Comb. Number Theory, Volume 3 (2013) no. 3-4, pp. 118-144 | Zbl | MR
[7] A family of Thue equations involving powers of units of the simplest cubic fields, J. Théor. Nombres Bordeaux, Volume 27 (2015) no. 2, pp. 537-563 | Numdam | Zbl | DOI | MR
[8] The Mahler measure of algebraic numbers: a survey, Number Theory and Polynomials (McKee, James; Smyth, Chris, eds.) (London Mathematical Society Lecture Note Series), Cambridge University Press, 2008, pp. 322-349 | Zbl | DOI
[9] Complete solutions to a family of cubic Diophantine equations, J. Number Theory, Volume 34 (1990) no. 2, pp. 235-250 | Zbl | DOI | MR
[10] On integers with many small prime factors, Compos. Math., Volume 26 (1973) no. 3, pp. 319-330 | Numdam | Zbl | MR
Cité par Sources :





