New gaps on the Lagrange and Markov spectra
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 1, pp. 311-338

Let L and M denote the Lagrange and Markov spectra, respectively. It is known that LM and that ML. In this work, we exhibit new gaps of L and M using two methods. First, we derive such gaps by describing a new portion of ML near to 3.938: this region (together with three other candidates) was found by investigating the pictures of L recently produced by V. Delecroix and the last two authors with the aid of an algorithm explained in one of the appendices to this paper. As a by-product, we also get the largest known elements of ML and we improve upon a lower bound on the Hausdorff dimension of ML obtained by the last two authors together with M. Pollicott and P. Vytnova (heuristically, we get a new lower bound of 0.593 on the dimension of ML). Secondly, we use a renormalisation idea and a thickness criterion (reminiscent from the third author’s PhD thesis) to detect infinitely many maximal gaps of M accumulating to Freiman’s gap preceding the so-called Hall’s ray [4.52782956616,)L.

On note respectivement L et M les spectres de Lagrange et de Markov. Il est connu que LM et que ML. Dans ce travail, on détecte de nouvelles lacunes dans L et M en utilisant les deux méthodes suivantes. Premièrement, on obtient de telles lacunes en décrivant une nouvelle partie de ML proche de 3,938 : cette région (avec trois autres candidats) a été trouvée en étudiant les images de L récemment produites par V. Delecroix et les deux derniers auteurs à l’aide de l’algorithme expliqué dans l’un des appendices de cet article. En outre, on obtient les plus grands éléments connus de ML et on améliore la minoration de la dimension de Hausdorff de ML obtenue par les deux derniers auteurs avec M. Pollicott et P. Vytnova (heuristiquement, on obtient une nouvelle minoration de la dimension de ML par 0,593). Deuxièmement, on utilise une idée de renormalisation et un critère d’épaisseur (issu de la thèse de doctorat du troisième auteur) pour détecter une infinité de lacunes maximales de M s’accumulant près de la lacune de Freiman précédant le célèbre rayon de Hall [4,52782956616,) L.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1280
Classification : 11J06, 11A55
Keywords: Lagrange and Markov spectra, maximal gaps, Hausdorff dimension

Jeffreys, Luke  1   ; Matheus, Carlos  2   ; Moreira, Carlos Gustavo  3 , 4

1 School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK
2 Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France
3 SUSTech International Center for Mathematics Shenzhen, Guangdong, People’s Republic of China
4 IMPA, Estrada Dona Castorina 110, CEP 22460-320, Rio de Janeiro, Brazil
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_1_311_0,
     author = {Jeffreys, Luke and Matheus, Carlos and Moreira, Carlos Gustavo},
     title = {New gaps on the {Lagrange} and {Markov} spectra},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {311--338},
     year = {2024},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {1},
     doi = {10.5802/jtnb.1280},
     mrnumber = {4788375},
     zbl = {07892786},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1280/}
}
TY  - JOUR
AU  - Jeffreys, Luke
AU  - Matheus, Carlos
AU  - Moreira, Carlos Gustavo
TI  - New gaps on the Lagrange and Markov spectra
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 311
EP  - 338
VL  - 36
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1280/
DO  - 10.5802/jtnb.1280
LA  - en
ID  - JTNB_2024__36_1_311_0
ER  - 
%0 Journal Article
%A Jeffreys, Luke
%A Matheus, Carlos
%A Moreira, Carlos Gustavo
%T New gaps on the Lagrange and Markov spectra
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 311-338
%V 36
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1280/
%R 10.5802/jtnb.1280
%G en
%F JTNB_2024__36_1_311_0
Jeffreys, Luke; Matheus, Carlos; Moreira, Carlos Gustavo. New gaps on the Lagrange and Markov spectra. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 1, pp. 311-338. doi: 10.5802/jtnb.1280

[1] Cusick, Thomas W.; Flahive, Mary E. The Markoff and Lagrange spectra, Mathematical Surveys and Monographs, 30, American Mathematical Society, 1989, ix+97 pages | Zbl | DOI | MR

[2] Freiman, Gregory A. Noncoincidence of the Markov and Lagrange spectra, Mat. Zametki, Volume 3 (1968), pp. 195-200 English translation in Math. Notes 3 (1968), p. 125-128 | Zbl

[3] Freiman, Gregory A. The initial point of Hall’s ray, Number-theoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), Kalininskiĭ Gos. Univ., 1973, pp. 87-120

[4] Freiman, Gregory A. Diophantine approximations and geometry of numbers. (Markov problem) (Russian), Kalininskiĭ Gos. Univ., 1975, 144 pages

[5] Freiman, Gregory A.; Judin, Aleksandr A On the Markov spectrum (Russian), Litov. Mat. Sb., Volume 6 (1966), pp. 443-447 | Zbl | MR

[6] Hall, Marshall Jr On the sum and product of continued fractions, Ann. Math., Volume 48 (1947), pp. 966-993 | DOI | Zbl

[7] Hall, Marshall Jr The Markoff spectrum, Acta Arith., Volume 18 (1971), pp. 387-399 | DOI | Zbl | MR

[8] Jenkinson, Oliver; Pollicott, Mark Computing the dimension of dynamically defined sets: E 2 and bounded continued fractions, Ergodic Theory Dyn. Syst., Volume 21 (2001) no. 5, pp. 1429-1445 | Zbl | MR

[9] Lima, Davi; Matheus, Carlos; Moreira, Carlos G.; Romaña, Sergio Classical and dynamical Markov and Lagrange spectra. Dynamical, fractal and arithmetic aspects, World Scientific, 2020, xiii+213 pages | MR

[10] Markov, Andreĭ Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 15 (1879), pp. 381-406 | Zbl

[11] Markov, Andreĭ Sur les formes quadratiques binaires indéfinies II, Math. Ann., Volume 17 (1880), pp. 379-399 | Zbl | MR

[12] Matheus, Carlos; Moreira, Carlos G. Fractal geometry of the complement of Lagrange spectrum in Markov spectrum, Comment. Math. Helv., Volume 95 (2020) no. 3, pp. 593-633 | DOI | Zbl | MR

[13] Matheus, Carlos; Moreira, Carlos G. Diophantine approximation, Lagrange and Markov spectra, and dynamical Cantor sets, Notices Am. Math. Soc., Volume 68 (2021) no. 8, pp. 1301-1311 | Zbl | MR

[14] Matheus, Carlos; Moreira, Carlos G.; Pollicott, Mark; Vytnova, Polina Hausdorff dimension of Gauss-Cantor sets and two applications to classical Lagrange and Markov spectra, Adv. Math., Volume 409 (2022), 108693, 70 pages | Zbl | MR

[15] Moreira, Carlos G. Stable intersections of Cantor sets and homoclinic bifurcations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 13 (1996) no. 6, pp. 741-781 | DOI | Zbl | Numdam | MR

[16] Palis, Jacob; Takens, Floris Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, fractal dimensions and infinitely many attractors, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, 1993 | MR

[17] Perron, Oskar Über die approximation irrationaler Zahlen durch rationale II, Sitzungsber. Heidelb. Akad. Wiss., Volume 1921 (1921) no. 4, 8 pages | Zbl

[18] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.4), 2021 (http://www.sagemath.org/)

[19] Schecker, Hanno Über die Menge der Zahlen, die als Minima quadratischer Formen auftreten, J. Number Theory, Volume 9 (1977) no. 1, pp. 121-141 | Zbl | DOI | MR

Cité par Sources :