We prove that an additive form of degree , odd, , over the unramified quadratic extension has a nontrivial zero if the number of variables satisifies . If , then there exists a nontrivial zero if , this bound being optimal. We give examples of forms in variables without a nontrivial zero in case that .
Nous prouvons qu’une forme additive de degré , impair, , sur l’extension quadratique non ramifiée admet un zéro non trivial si le nombre de variables satisfait la condition . Si , alors il existe un zéro non trivial si , cette borne étant optimale. Si , nous donnons des exemples de formes en variables n’ayant pas de zéros non triviaux.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1279
Keywords: Forms in many variables, p-adic fields, unramified extension, additive forms
Duncan, Drew  ; Leep, David B.  1
CC-BY-ND 4.0
@article{JTNB_2024__36_1_293_0,
author = {Duncan, Drew and Leep, David B.},
title = {Solubility of {Additive} {Forms} of {Twice} {Odd} {Degree} over $\mathbb{Q}_2(\sqrt{5})$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {293--309},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {1},
doi = {10.5802/jtnb.1279},
mrnumber = {4788374},
zbl = {07892785},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1279/}
}
TY - JOUR
AU - Duncan, Drew
AU - Leep, David B.
TI - Solubility of Additive Forms of Twice Odd Degree over $\mathbb{Q}_2(\sqrt{5})$
JO - Journal de théorie des nombres de Bordeaux
PY - 2024
SP - 293
EP - 309
VL - 36
IS - 1
PB - Société Arithmétique de Bordeaux
UR - https://www.numdam.org/articles/10.5802/jtnb.1279/
DO - 10.5802/jtnb.1279
LA - en
ID - JTNB_2024__36_1_293_0
ER -
%0 Journal Article
%A Duncan, Drew
%A Leep, David B.
%T Solubility of Additive Forms of Twice Odd Degree over $\mathbb{Q}_2(\sqrt{5})$
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 293-309
%V 36
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1279/
%R 10.5802/jtnb.1279
%G en
%F JTNB_2024__36_1_293_0
Duncan, Drew; Leep, David B. Solubility of Additive Forms of Twice Odd Degree over $\mathbb{Q}_2(\sqrt{5})$. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 1, pp. 293-309. doi: 10.5802/jtnb.1279
[1] Homogeneous additive equations, Proc. R. Soc. Lond., Ser. A, Volume 274 (1963), pp. 443-460 | DOI | MR | Zbl
[2] Solubility of Additive Forms of Twice Odd Degree over Ramified Quadratic Extensions of , Acta Arith., Volume 201 (2021) no. 2, pp. 149-164 | DOI | MR
[3] Solubility of Additive Quartic Forms over Ramified Quadratic Extensions of , Int. J. Number Theory, Volume 18 (2022) no. 10, pp. 2265-2278 | DOI | Zbl | MR
[4] Diagonal equations over unramified extensions of , Bull. Lond. Math. Soc., Volume 50 (2018) no. 4, pp. 619-634 | DOI | MR | Zbl
[5] Diagonal forms over the unramified quadratic extension of , Ph. D. Thesis, Universidade de Brasília (2022)
[6] Diagonal forms over quadratic extensions of , Publ. Math. Debr., Volume 101 (2022) no. 1-2, pp. 63-101 | MR | DOI | Zbl
Cité par Sources :





