Explicit formulas for the exponential and logarithm of the Carlitz–Tate twist, and applications
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 1, pp. 251-291

We present explicit formulas for the exponential and logarithm of the nth tensor power of the Carlitz module, introduced by Anderson and Thakur in 1990. We use these to prove transcendence results of the log-type hypergeometric functions for function fields defined in our previous paper [17].

Nous présentons des formules explicites pour l’exponentielle et le logarithme de la puissance tensorielle n-ième du module de Carlitz, introduit par Anderson et Thakur en 1990. Nous les utilisons pour prouver des résultats de transcendance pour les fonctions hypergéométriques de type log sur les corps de fonctions définies dans notre article précédent [17].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1278
Classification : 11G09, 11J91
Keywords: Carlitz–Tate twist, Anderson–Thakur exponential, Anderson–Thakur logarithm, Thakur hypergeometric function, log-type hypergeometric function

Hasegawa, Takehiro  1

1 Shiga University, Otsu, Shiga 520-0862 Japan
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_1_251_0,
     author = {Hasegawa, Takehiro},
     title = {Explicit formulas for the exponential and logarithm of the {Carlitz{\textendash}Tate} twist, and applications},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {251--291},
     year = {2024},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {1},
     doi = {10.5802/jtnb.1278},
     mrnumber = {4788373},
     zbl = {07892784},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1278/}
}
TY  - JOUR
AU  - Hasegawa, Takehiro
TI  - Explicit formulas for the exponential and logarithm of the Carlitz–Tate twist, and applications
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 251
EP  - 291
VL  - 36
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1278/
DO  - 10.5802/jtnb.1278
LA  - en
ID  - JTNB_2024__36_1_251_0
ER  - 
%0 Journal Article
%A Hasegawa, Takehiro
%T Explicit formulas for the exponential and logarithm of the Carlitz–Tate twist, and applications
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 251-291
%V 36
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1278/
%R 10.5802/jtnb.1278
%G en
%F JTNB_2024__36_1_251_0
Hasegawa, Takehiro. Explicit formulas for the exponential and logarithm of the Carlitz–Tate twist, and applications. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 1, pp. 251-291. doi: 10.5802/jtnb.1278

[1] Anderson, Greg W. t-motives, Duke Math. J., Volume 53 (1986), pp. 457-502 | Zbl | MR

[2] Anderson, Greg W.; Thakur, Dinesh S. Tensor powers of the Carlitz module and zeta values, Ann. Math., Volume 132 (1990) no. 1, pp. 159-191 | DOI | Zbl

[3] André, Yves G-functions and geometry, Aspects of Mathematics, 13, Vieweg & Sohn, 1989 | DOI | MR

[4] Carlitz, Leonard On certain functions connected with polynomials in a Galois field, Duke Math. J., Volume 1 (1935) no. 2, pp. 137-168 | Zbl | MR

[5] Chang, Chieh-Yu; Green, Nathan; Mishiba, Yoshinori Taylor coefficients of Anderson-Thakur series and explicit formulae, Math. Ann., Volume 379 (2021) no. 3-4, pp. 1425-1474 | DOI | Zbl | MR

[6] Chang, Chieh-Yu; Mishiba, Yoshinori On multiple polylogarithms in characteristic p: v-adic vanishing versus -adic Eulerianness, Int. Math. Res. Not., Volume 2019 (2019) no. 3, pp. 923-947 | DOI | Zbl | MR

[7] Chang, Chieh-Yu; Mishiba, Yoshinori On a conjecture of Furusho over function fields, Invent. Math., Volume 223 (2021) no. 1, pp. 49-102 | DOI | Zbl | MR

[8] Chang, Chieh-Yu; Yu, Jing Determination of algebraic relations among special zeta values in positive characteristic, Adv. Math., Volume 216 (2007) no. 1, pp. 321-345 | DOI | Zbl | MR

[9] Cohen, Paula B.; Wüstholz, Gisbert Application of the André–Oort conjecture to some questions in transcendence, A panorama in number theory or The view from Baker’s garden (Zürich, 1999), Cambridge University Press, 2002, pp. 89-106 | DOI | Zbl

[10] Drinfeld, Vladimir G. Elliptic modules, Mat. Sb., N. Ser., Volume 94 (1974), pp. 594-627 | MR

[11] Drinfeld, Vladimir G. Elliptic modules. II, Mat. Sb., N. Ser., Volume 102 (1977), pp. 182-194 | Zbl | MR

[12] Dwork, Bernard; Gerotto, Giovanni; Sullivan, Francis J. An introduction to G-functions, Annals of Mathematics Studies, 133, Princeton University Press, 1994 | MR

[13] Edixhoven, Bas; Yafaev, Andrei Subvarieties of Shimura varieties, Ann. Math., Volume 157 (2003) no. 2, pp. 621-645 | DOI | Zbl

[14] El-Guindy, Ahmad; Papanikolas, Matthew A. Explicit formulas for Drinfeld modules and their periods, J. Number Theory, Volume 133 (2013) no. 6, pp. 1864-1886 | DOI | Zbl | MR

[15] Goss, David Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 35, Springer, 1996 | DOI | MR

[16] Harada, Ryotaro On the period interpretation for some special values of Thakur hypergeometric functions (2022) (https://arxiv.org/abs/2205.00649)

[17] Hasegawa, Takehiro Logarithmic-type and exponential-type hypergeometric functions for function fields, J. Number Theory, Volume 233 (2022), pp. 87-111 | DOI | Zbl | MR

[18] Kochubei, Anatoly N. Polylogarithms and a zeta function for finite places of a function field, Ultrametric functional analysis (Clermont-Ferrand, 2004) (Contemporary Mathematics), Volume 384, American Mathematical Society, 2005, pp. 157-167 | Zbl | DOI | MR

[19] Kochubei, Anatoly N. Evolution equations and functions of hypergeometric type over fields of positive characteristic, Bull. Belg. Math. Soc. Simon Stevin, Volume 14 (2007) no. 5, pp. 947-959 | Zbl | MR

[20] Kochubei, Anatoly N. Hypergeometric functions and Carlitz differential equations over function fields, Arithmetic and geometry around hypergeometric functions (Istanbul, 2005) (Progress in Mathematics), Volume 260, Birkhäuser, 2007, pp. 163-187 | DOI | Zbl | MR

[21] Maurischat, Andreas Prolongations of t-motives and algebraic independence of periods, Doc. Math., Volume 23 (2018), pp. 815-838 | DOI | Zbl | MR

[22] Namoijam, Changningphaabi; Papanikolas, Matthew A. Hyperderivatives of periods and quasi-periods for Anderson t-modules (2021) (https://arxiv.org/abs/2103.05836)

[23] Papanikolas, Matthew A. Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math., Volume 171 (2008) no. 1, pp. 123-174 | DOI | Zbl | MR

[24] Siegel, Carl L. Über einige Anwendungen diophantischer Approximationen, On some applications of Diophantine approximations. (A translation of Carl Ludwig Siegel’s “Über einige Anwendungen diophantischer Approximationen” by Clemens Fuchs) (Quaderni. Scuola Normale Superiore di Pisa. Monographs), Volume 2, Edizioni della Normale, 2014, pp. 81-138 | Zbl

[25] Thakur, Dinesh S. Hypergeometric functions for function fields, Finite Fields Appl., Volume 1 (1995) no. 2, pp. 219-231 | Zbl | DOI | MR

[26] Thakur, Dinesh S. Hypergeometric functions for function fields. II, J. Ramanujan Math. Soc., Volume 15 (2000) no. 1, pp. 43-52 | Zbl | MR

[27] Thakur, Dinesh S. Function field arithmetic, World Scientific, 2004 | Zbl | DOI | MR

[28] Thakur, Dinesh S.; Wen, Zhi-Ying; Yao, Jia-Yan; Zhao, Liang Transcendence in positive characteristic and special values of hypergeometric functions, J. Reine Angew. Math., Volume 657 (2011), pp. 135-171 | Zbl | MR

[29] Wade, L. I. Certain quantities transcendental over GF(p n ,x), Duke Math. J., Volume 8 (1941), pp. 701-720 | Zbl

[30] Wolfart, Jürgen Werte hypergeometrischer Funktionen, Invent. Math., Volume 92 (1988) no. 1, pp. 187-216 | Zbl | DOI | MR

[31] Yu, Jing Transcendence and Drinfeld modules, Invent. Math., Volume 83 (1986), pp. 507-517 | Zbl | MR

[32] Yu, Jing Transcendence and special zeta values in characteristic p, Ann. Math., Volume 134 (1991) no. 1, pp. 1-23 | Zbl

Cité par Sources :