In the present paper we establish bounds for the size of the spectral gap for group actions on homogeneous spaces. Our approach is based on estimating operator norms of suitable averaging operators, and we develop techniques for establishing both upper and lower bounds for such norms. We shall show that this analytic problem is closely related to the arithmetic problem of establishing bounds on the discrepancy of distribution for rational points on algebraic group varieties. As an application, we show how to establish an effective bound for property of congruence subgroups of arithmetic lattices in algebraic groups which are forms of , using estimates in intrinsic Diophantine approximation which follow from Heath-Brown’s analysis of rational points on -dimensional quadratic surfaces.
Dans le présent article, nous établissons des bornes pour la taille de l’écart spectral pour les actions de groupe sur les espaces homogènes. Notre approche est basée sur l’estimation des normes des opérateurs de moyennage appropriés, et nous développons des techniques pour établir des bornes supérieures et inférieures pour de telles normes. Nous montrerons que ce problème analytique est étroitement lié au problème arithmétique de l’établissement de bornes sur la divergence de distribution pour les points rationnels sur les variétés de groupes algébriques. Comme application, nous montrons comment établir une borne effective pour la propriété des sous-groupes de congruence des treillis arithmétiques dans les groupes algébriques qui sont des formes de , en utilisant des estimations dans l’approximation diophantienne intrinsèque qui découlent de l’analyse de Heath-Brown des points rationnels sur des variétés quadratiques de dimension .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1275
Keywords: Semisimple group, discrepancy, spectral gap, Diophantine approximation, automorphic representation
Gorodnik, Alexander  1 ; Nevo, Amos  2 , 3
CC-BY-ND 4.0
@article{JTNB_2024__36_1_127_0,
author = {Gorodnik, Alexander and Nevo, Amos},
title = {On discrepancy, intrinsic {Diophantine} approximation, and spectral gaps},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {127--174},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {1},
doi = {10.5802/jtnb.1275},
mrnumber = {4788370},
zbl = {07892781},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1275/}
}
TY - JOUR AU - Gorodnik, Alexander AU - Nevo, Amos TI - On discrepancy, intrinsic Diophantine approximation, and spectral gaps JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 127 EP - 174 VL - 36 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1275/ DO - 10.5802/jtnb.1275 LA - en ID - JTNB_2024__36_1_127_0 ER -
%0 Journal Article %A Gorodnik, Alexander %A Nevo, Amos %T On discrepancy, intrinsic Diophantine approximation, and spectral gaps %J Journal de théorie des nombres de Bordeaux %D 2024 %P 127-174 %V 36 %N 1 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1275/ %R 10.5802/jtnb.1275 %G en %F JTNB_2024__36_1_127_0
Gorodnik, Alexander; Nevo, Amos. On discrepancy, intrinsic Diophantine approximation, and spectral gaps. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 1, pp. 127-174. doi: 10.5802/jtnb.1275
[1] On spectral characterizations of amenability, Isr. J. Math., Volume 137 (2003), pp. 1-33 | Zbl | DOI | MR
[2] Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008, xiii+472 pages | DOI
[3] On the Ramanujan conjecture over number fields, Ann. Math., Volume 174 (2011) no. 1, pp. 581-605 | DOI | Zbl
[4] The role of the Ramanujan conjecture in analytic number theory, Bull. Am. Math. Soc., Volume 50 (2013) no. 2, pp. 267-320 | Zbl | DOI | MR
[5] Ramanujan duals and automorphic spectrum, Bull. Am. Math. Soc., Volume 26 (1992) no. 2, pp. 253-257 | DOI | Zbl | MR
[6] Ramanujan duals. II, Invent. Math., Volume 106 (1991) no. 1, pp. 1-11 | Zbl | DOI | MR
[7] Representations of -adic groups: a survey, Automorphic forms, representations and -functions (Oregon State Univ., Corvallis, 1977) (Proceedings of Symposia in Pure Mathematics), Volume 33.1, American Mathematical Society, 1979, pp. 111-155 | Zbl | MR | DOI
[8] Démonstration de la conjecture , Invent. Math., Volume 151 (2003) no. 2, pp. 297-328 | Zbl | DOI | MR
[9] Spectral theory of automorphic forms, Automorphic forms and applications (IAS/Park City Mathematics Series), Volume 12, American Mathematical Society, 2007, pp. 43-93 | Zbl
[10] The Kunze–Stein phenomenon, Ann. Math. (1978), pp. 209-234 | Zbl | DOI
[11] Analytic methods for Diophantine equations and Diophantine inequalities, Cambridge Mathematical Library, Cambridge University Press, 2005, xx+140 pages | DOI | MR
[12] Bounds for automorphic L-functions, Invent. Math., Volume 112 (1993) no. 1, pp. 1-8 | DOI | Zbl | MR
[13] Moyennes et représentations unitaires, Lecture Notes in Mathematics, 300, Springer, 1972, 113 pages | DOI | MR
[14] On the asymptotics of Hecke operators for reductive groups, Math. Ann., Volume 380 (2021) no. 3-4, pp. 1037-1104 | DOI | Zbl | MR
[15] Harmonic Analysis of Spherical Functions on Real Reductive Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 101, Springer, 1988, xiv+365 pages | DOI | MR
[16] Representation theory and automorphic functions, W. B. Saunders Co., 1969 | MR
[17] Counting intrinsic Diophantine approximations in simple algebraic groups, Isr. J. Math., Volume 251 (2022) no. 2, pp. 443-466 | DOI | Zbl | MR
[18] The ergodic theory of lattice subgroups, Annals of Mathematics Studies, 172, Princeton University Press, 2009, 136 pages | MR
[19] Quantitative ergodic theorems and their number theoretic applications, Bull. Am. Math. Soc., Volume 52 (2015) no. 1, pp. 65-113 | DOI | Zbl | MR
[20] Discrepancy of rational points in simple algebraic groups (2021) (https://arxiv.org/abs/2104.06765)
[21] Amenable actions of locally compact groups, J. Funct. Anal., Volume 4 (1969), pp. 295-315 | DOI | Zbl | MR
[22] A new form of the circle method, and its application to quadratic forms, J. Reine Angew. Math., Volume 481 (1996), pp. 149-206 | Zbl | MR
[23] Algebraic hulls and the Følner property, Geom. Funct. Anal., Volume 6 (1996) no. 4, pp. 666-688 | DOI | Zbl | MR
[24] Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl., Volume 1 (1967), pp. 63-65 | DOI | Zbl
[25] Refined estimates towards the Ramanujan and Selberg conjectures appendix in H. H. Kim, “Functoriality for the exterior square of and the symmetric fourth of ”, J. Am. Math. Soc. 16 (2003), no. 1, 139–183
[26] On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, 544, Springer, 1976, v+337 pages | DOI | MR
[27] Spherical functions on a -adic Chevalley group, Bull. Am. Math. Soc., Volume 74 (1968) no. 3, pp. 520-525 | DOI | Zbl | MR
[28] Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, 1995, xii+343 pages | DOI | MR
[29] Sato-Tate equidistribution for families of Hecke-Maass forms on , Algebra Number Theory, Volume 15 (2021) no. 6, pp. 1343-1428 | DOI | Zbl | MR
[30] Spectral transfer and pointwise ergodic theorems for semi-simple Kazhdan groups, Math. Res. Lett., Volume 5 (1998) no. 3, pp. 305-325 | DOI | Zbl | MR
[31] Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press Inc., 1994, xi+614 pages
[32] Modular forms, the Ramanujan conjecture, and the Jacquet-Langlands correspondence (appendix in A. Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Mathematics, vol. 125, Birkhäuser, 1994)
[33] Notes on the generalized Ramanujan conjectures, Harmonic analysis, the trace formula, and Shimura varieties (Toronto, 2003) (Clay Mathematics Proceedings), Volume 4, American Mathematical Society, 2005, pp. 659-685 | Zbl | MR
[34] Bounds for multiplicities of automorphic representations, Duke Math. J., Volume 64 (1991) no. 1, pp. 207-227 | Zbl | MR
[35] Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., n. Ser., Volume 20 (1956), pp. 47-87 | Zbl | MR
[36] On estimation of Fourier coefficients of modular forms, Theory of numbers (Pasadena, 1963) (Proceedings of Symposia in Pure Mathematics), Volume 1965, American Mathematical Society, 1965, pp. 1-15 | Zbl | MR
[37] Introduction to harmonic analysis on reductive -adic groups, Mathematical Notes, 23, Princeton University Press, 1979, iv+372 pages | MR
[38] Harmonic analysis of spherical functions on reductive groups over -adic fields, Pac. J. Math., Volume 109 (1983) no. 1, pp. 215-235 | DOI | MR
[39] Reductive groups over local fields, Automorphic forms, representations and -functions (Oregon State Univ., Corvallis, 1977) (Proceedings of Symposia in Pure Mathematics), Volume 33.1, American Mathematical Society, 1979, pp. 29-69 | DOI | Zbl | MR
[40] The Kunze–Stein phenomenon, Ph. D. Thesis, Univ. of New South Wales (2002)
[41] Algebraic groups and their birational invariants, Translations of Mathematical Monographs, 179, American Mathematical Society, 1998, xiii+218 pages | MR
[42] Adeles and algebraic groups, Progress in Mathematics, 23, Birkhäuser, 1982, v+126 pages | DOI
Cité par Sources :





