Extensions of mod p representations of division algebras
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 1, pp. 45-74

Let F be a local field over Q p or F p t, and let D be a central simple division algebra over F of degree d. In the p-adic case, we assume p>de+1 where e is the ramification degree over Q p ; otherwise, we need only assume p and d are coprime. For the subgroup I 1 =1+ϖ D 𝒪 D of D × we determine the structure of H 1 (I 1 ,π) as a representation of D × /I 1 for an arbitrary smooth irreducible F ¯ p -representation π of D × . We use this to compute the group Ext D × 1 (π,π ) for arbitrary smooth irreducible representations π and π of D × . In the p-adic case, via Poincaré duality we can compute the top cohomology groups and compute the highest degree extensions.

Soit F un corps local sur Q p ou F p t et soit D une algèbre à division centrale simple sur F de degré d. Dans le cas p-adique, on suppose que p>de+1e est le degré de ramification sur Q p  ; sinon on suppose seulement que p et d sont premiers entre eux. Pour le sous-groupe I 1 =1+ϖ D 𝒪 D de D × , on détermine la structure de H 1 (I 1 ,π) en tant que représentation de D × /I 1 pour une F ¯ p -représentation lisse irréductible quelconque π de D × . Nous utilisons ceci pour calculer le groupe Ext D × 1 (π,π ) pour des représentations lisses irréductibles quelconques π et π de D × . Dans le cas p-adique, via la dualité de Poincaré, nous pouvons calculer les groupes de cohomologie supérieurs et les extensions de degré maximal.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1273
Classification : 22E50, 20J06
Keywords: cohomology, representations, extensions, division algebras

Keisling, Andrew  1   ; Pentland, Dylan  2

1 University of California, Berkeley, USA
2 Harvard University, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_1_45_0,
     author = {Keisling, Andrew and Pentland, Dylan},
     title = {Extensions of mod $p$ representations of division algebras},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {45--74},
     year = {2024},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {1},
     doi = {10.5802/jtnb.1273},
     zbl = {1544.22020},
     mrnumber = {4788368},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1273/}
}
TY  - JOUR
AU  - Keisling, Andrew
AU  - Pentland, Dylan
TI  - Extensions of mod $p$ representations of division algebras
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 45
EP  - 74
VL  - 36
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1273/
DO  - 10.5802/jtnb.1273
LA  - en
ID  - JTNB_2024__36_1_45_0
ER  - 
%0 Journal Article
%A Keisling, Andrew
%A Pentland, Dylan
%T Extensions of mod $p$ representations of division algebras
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 45-74
%V 36
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1273/
%R 10.5802/jtnb.1273
%G en
%F JTNB_2024__36_1_45_0
Keisling, Andrew; Pentland, Dylan. Extensions of mod $p$ representations of division algebras. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 1, pp. 45-74. doi: 10.5802/jtnb.1273

[1] Breuil, Christophe The emerging p-adic Langlands programme, Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19–27, 2010. Vol. II: Invited lectures, Hindustan Book Agency, 2010, pp. 203-230 | MR

[2] Henn, Hans-Werner On finite resolutions of K(n)-local spheres, Elliptic cohomology. Geometry, applications, and higher chromatic analogues. Selected papers of the workshop, Cambridge, UK, December 9–20, 2002 (London Mathematical Society Lecture Note Series), Volume 342, Cambridge University Press, 2007, pp. 122-169 | Zbl

[3] Kozioł, Karol Hecke module structure on first and top pro-p-Iwahori cohomology, Acta Arith., Volume 186 (2018) no. 4, pp. 349-376 | DOI | Zbl | MR

[4] Kozioł, Karol; Schwein, David On modp orientation characters, 2021 (https://karolkoziol.github.io/orientation.pdf)

[5] Lazard, Michel Groupes analytiques p-adiques, Publ. Math., Inst. Hautes Étud. Sci., Volume 26 (1965), pp. 389-603 | Zbl | MR

[6] Ly, Tony Représentations modulo p de GL(m,D), D algèbre à division sur un corps local, Ph. D. Thesis, Université Paris Diderot 7 (2013)

[7] Paškūnas, Vytautas Extensions for supersingular representations of GL 2 ( p ), p-adic representations of p-adic groups III: Global and geometric methods (Astérisque), Volume 331, Société Mathématique de France, 2010, pp. 317-353 | Numdam | Zbl

[8] Platonov, Vladimir; Rapinchuk, Andrei Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press Inc., 1994, xi+614 pages

[9] Riehm, Carl The norm 1 group of p-adic division algebra, Am. J. Math., Volume 92 (1970) no. 2, pp. 499-523 | DOI | Zbl | MR

[10] Scholze, Peter On the p-adic cohomology of the Lubin-Tate tower, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 4, pp. 811-863 (with an appendix by Michael Rapoport) | DOI | Zbl | MR | Numdam

[11] Serre, Jean-Pierre Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer, 1977 | DOI | MR

[12] Shioda, Tetsuji; Katsura, Toshiyuki On Fermat varieties, Tôhoku Math. J., Volume 31 (1979) no. 1, pp. 97-115 | Zbl | MR

[13] Totaro, Burt Euler characteristics for p-adic Lie groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 90 (1999), pp. 169-225 | Zbl | DOI | Numdam | MR

[14] Wang, Shianghaw On the commutator group of a simple algebra, Am. J. Math., Volume 72 (1950), pp. 323-334 | DOI | Zbl | MR

[15] Weil, André Numbers of solutions of equations in finite fields, Bull. Am. Math. Soc., Volume 55 (1949), pp. 497-508 | DOI | Zbl | MR

Cité par Sources :