Let be the field of -adic numbers and a split connected reductive group scheme over . In this work we will introduce a sheaf of twisted arithmetic differential operators on the formal flag variety of , associated to a general character. In particular, we will generalize the results of [21], concerning the -affinity of the smooth formal flag variety of , of certain sheaves of -adically complete twisted arithmetic differential operators associated to an algebraic character, and the results of [24] concerning the calculation of the global sections.
Soit le corps des nombres -adiques et un schéma en groupes réductif, connexe et déployé sur . Nous introduirons un faisceau d’opérateurs différentiels arithmétiques tordus sur la variété des drapeaux formelle de , associée à un caractère général. En particulier, nous généraliserons les résultats de [21], concernant la -affinité de la variété des drapeaux formelle lisse de , de certains gerbes d’opérateurs différentiels arithmétiques tordus -adiquement complets, associés à un caractère algébrique, et les résultats de [24] concernant le calcul des sections globales.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1272
Keywords: Formal flag variety, twisted arithmetic differential operators, Beilinson–Bernstein correspondence
Sarrazola-Alzate, Andrés  1
CC-BY-ND 4.0
@article{JTNB_2024__36_1_1_0,
author = {Sarrazola-Alzate, Andr\'es},
title = {A {Beilinson{\textendash}Bernstein} {Theorem} for {Twisted} {Arithmetic} {Differential} {Operators} on the {Formal} {Flag} {Variety}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {1--43},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {1},
doi = {10.5802/jtnb.1272},
mrnumber = {4788367},
zbl = {07892778},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1272/}
}
TY - JOUR AU - Sarrazola-Alzate, Andrés TI - A Beilinson–Bernstein Theorem for Twisted Arithmetic Differential Operators on the Formal Flag Variety JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 1 EP - 43 VL - 36 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1272/ DO - 10.5802/jtnb.1272 LA - en ID - JTNB_2024__36_1_1_0 ER -
%0 Journal Article %A Sarrazola-Alzate, Andrés %T A Beilinson–Bernstein Theorem for Twisted Arithmetic Differential Operators on the Formal Flag Variety %J Journal de théorie des nombres de Bordeaux %D 2024 %P 1-43 %V 36 %N 1 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1272/ %R 10.5802/jtnb.1272 %G en %F JTNB_2024__36_1_1_0
Sarrazola-Alzate, Andrés. A Beilinson–Bernstein Theorem for Twisted Arithmetic Differential Operators on the Formal Flag Variety. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 1, pp. 1-43. doi: 10.5802/jtnb.1272
[1] On irreducible representations of compact -adic analytic groups, Ann. Math., Volume 178 (2013) no. 2, pp. 453-557 | Zbl | DOI
[2] Localisation de -modules, C. R. Math. Acad. Sci. Paris, Volume 292 (1981), pp. 15-18 | Zbl
[3] A proof of Jantzen conjectures, I. M. Gelfand Seminar. Part 1: Papers of the Gelfand seminar in functional analysis held at Moscow University, Russia, September 1993 (Advances in Soviet Mathematics), Volume 16, American Mathematical Society, 1993, pp. 1-50 | Zbl | MR
[4] Wall-crossing functors and -modules, Represent. Theory, Volume 3 (1999), pp. 1-31 | Zbl | DOI | MR
[5] -modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. Sci. Éc. Norm. Supér., Volume 29 (1996) no. 2, pp. 185-272 | DOI | Zbl | MR
[6] Introduction à la theorie arithmetique des -modules, Cohomologies -adiques et applications arithmetiques. II (Astérisque), Volume 279, SMF, 2002, pp. 1-80 | Zbl
[7] Notes on crystalline cohomology. (MN-21), Mathematical Notes, 21, Princeton University Press, 2015 | DOI | MR
[8] Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. Math., Volume 167 (2008) no. 3, pp. 945-991 | DOI | Zbl
[9] Analytic -modules and applications, Mathematics and its Applications (Dordrecht), 247, Springer, 2013, xiii+581 pages | Zbl | MR
[10] Differential operators on homogeneous spaces. I: Irreducibility of the associated variety for annihilators of induced modules, Invent. Math., Volume 69 (1982), pp. 437-476 | DOI | Zbl | MR
[11] Differential operators on homogeneous spaces. II: relative enveloping algebras, Bull. Soc. Math. Fr., Volume 117 (1989) no. 2, pp. 167-210 | DOI | Numdam | Zbl | MR
[12] Démonstration de la conjecture de Kazhdan-Lusztig sur les modules de Verma, C. R. Math. Acad. Sci. Paris, Volume 291 (1980), pp. 373-376 | Zbl
[13] Groupes algébriques. Tome I: Géométrie algébrique. Généralités. Groupes commutatifs, Masson; North-Holland, 1970 | Zbl | MR
[14] Enveloping algebras, North-Holland Mathematical Library, 14, North-Holland, 1977 | DOI | MR
[15] Éléments de géométrie algébrique. I: Le langage des schémas, Publ. Math., Inst. Hautes Étud. Sci., Volume 4 (1960), pp. 1-228 | Numdam | Zbl | MR
[16] Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de J. Dieudonné, Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 1-361 | Zbl
[17] Éléments de géométrie algébrique. III: Étude cohomologique des faisceaux cohérents (seconde partie), Publ. Math., Inst. Hautes Étud. Sci., Volume 17 (1963), pp. 137-223 | Zbl
[18] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 2013 | MR
[19] -modules, perverse sheaves and representation theory, Progress in Mathematics, 236, Springer, 2007 | MR
[20] -affinité de l’espace projectif, Compos. Math., Volume 108 (1997) no. 3, pp. 277-318 | DOI | Zbl | MR
[21] Un théorème de Beilinson-Bernstein pour les -modules arithmétiques, Bull. Soc. Math. Fr., Volume 137 (2009) no. 2, pp. 159-183 | DOI | Zbl | MR
[22] -affinity of formal models of flag varieties, Math. Res. Lett., Volume 26 (2019) no. 6, pp. 1677-1745 | DOI | Zbl | MR
[23] -modules arithmétiques, distributions et localisation, Rend. Semin. Mat. Univ. Padova, Volume 139 (2018), pp. 1-76 | DOI | Zbl | MR
[24] -modules arithmétiques sur la variété de drapeaux, J. Reine Angew. Math., Volume 754 (2019), pp. 1-15 | DOI | Zbl | MR
[25] Arithmetic structures for differential operators on formal schemes, Nagoya Math. J., Volume 243 (2021), pp. 157-204 | DOI | Zbl | MR
[26] Representation of algebraic groups, American Mathematical Society, 2007 | DOI | MR
[27] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979), pp. 165-184 | DOI | Zbl | MR
[28] Zariskian filtrations, 2, Kluwer Academic Publishers, 1996, ix+252 pages | DOI | MR
[29] Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Mathematics, 1960, Springer, 2009 | DOI
[30] Localization and representation theory of reductive Lie groups (1993) (http://www.math.utah.edu/milicic/Eprints/book.pdf)
[31] Etale cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980, xiii+323 pages | DOI | MR
[32] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, 34, Springer, 1994 | DOI | MR
[33] Locally analytic representations and sheaves on the Bruhat-Tits building, Algebra Number Theory, Volume 8 (2014) no. 6, pp. 1365-1445 | DOI | Zbl | MR
[34] Locally analytic representations of via semistable models of , J. Inst. Math. Jussieu, Volume 18 (2019) no. 1, pp. 125-187 | DOI | Zbl | MR
[35] -equivariance of formal models of flag varieties, Rend. Semin. Mat. Univ. Padova, Volume 150 (2019), pp. 1-79 | DOI | Zbl | MR
[36] Algebras of -adic distribution and admissible representations, Invent. Math., Volume 153 (2003) no. 1, pp. 145-196 | DOI | Zbl | MR
[37] Some generalities on -equivariant quasi-coherent and -modules (1994) (Preprint Université Louis Pasteur, Strasbourg)
Cité par Sources :





