New p-adic hypergeometric functions and syntomic regulators
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 2, pp. 393-451

We introduce a new type of p-adic hypergeometric functions, which we call the p-adic hypergeometric functions of logarithmic type. The first main result is to prove the congruence relations that are similar to Dwork’s. The second main result is that the special values of our new functions appear in the syntomic regulators for hypergeometric curves, Fermat curves and some elliptic curves. According to the p-adic Beilinson conjecture by Perrin-Riou, they are expected to be related with the special values of p-adic L-functions. We provide one example for this.

Nous introduisons un nouveau type de fonctions hypergéométriques p-adiques, que nous appelons fonctions hypergéométriques p-adiques de type logarithmique. Le premier résultat principal de cet article est la preuve des relations de congruence similaires à celles de Dwork. Le deuxième résultat principal est que les valeurs spéciales de nos nouvelles fonctions apparaissent dans le calcul des régulateurs syntomiques pour les courbes hypergéométriques, courbes de Fermat et certaines courbes elliptiques. D’après la conjecture de Beilinson p-adique de Perrin-Riou, on s’attend à ce qu’elles soient liées aux valeurs spéciales des fonctions L p-adiques. Nous en donnons un exemple.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1250
Classification : 14F30, 19F27, 11S80, 19F15
Keywords: syntomic regulator, $p$-adic hypergeometric function, $p$-adic Beilinson conjecture

Asakura, Masanori 1

1 Department of Mathematics Hokkaido University Sapporo 060-0810, Japan
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_2_393_0,
     author = {Asakura, Masanori},
     title = {New $p$-adic hypergeometric functions and syntomic regulators},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {393--451},
     year = {2023},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {2},
     doi = {10.5802/jtnb.1250},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1250/}
}
TY  - JOUR
AU  - Asakura, Masanori
TI  - New $p$-adic hypergeometric functions and syntomic regulators
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 393
EP  - 451
VL  - 35
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1250/
DO  - 10.5802/jtnb.1250
LA  - en
ID  - JTNB_2023__35_2_393_0
ER  - 
%0 Journal Article
%A Asakura, Masanori
%T New $p$-adic hypergeometric functions and syntomic regulators
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 393-451
%V 35
%N 2
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1250/
%R 10.5802/jtnb.1250
%G en
%F JTNB_2023__35_2_393_0
Asakura, Masanori. New $p$-adic hypergeometric functions and syntomic regulators. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 2, pp. 393-451. doi: 10.5802/jtnb.1250

[1] Asakura, Masanori Regulators of K 2 of Hypergeometric Fibrations, Res. Number Theory, Volume 4 (2018) no. 2, 22, 25 pages | MR | Zbl

[2] Asakura, Masanori Frobenius action on a hypergeometric curve and an algorithm for computing values of Dwork’s p-adic hypergeometric functions, Transcendence in algebra, combinatorics, geometry and number theory (Springer Monographs in Mathematics), Volume 373, Springer, 2021, pp. 1-45 | DOI | MR | Zbl

[3] Asakura, Masanori; Chida, Masataka; Brunault, François A numerical approach toward the p-adic Beilinson conjecture for elliptic curves over , Res. Math. Sci., Volume 10 (2023) no. 1, 11, 58 pages | MR | Zbl

[4] Asakura, Masanori; Miyatani, Kazuaki Milnor K-theory, F-isocrystals and syntomic regulators (to appear in J. Inst. Math. Jussieu)

[5] Beilinson, Alexander A. Higher regulators of modular curves, Applications of algebraic K-theory to algebraic geometry and number theory (Contemporary Mathematics), Volume 55, American Mathematical Society, 1986, pp. 1-34 | MR | Zbl

[6] Besser, Amnon Syntomic regulators and p-adic integration. I. Rigid syntomic regulators, Isr. J. Math., Volume 120 (2000) no. B, pp. 291-334 | DOI | MR | Zbl

[7] Brunault, François Régulateurs p-adiques explicites pour le K 2 des courbes elliptiques, Actes de la conférence « Fonctions L et arithmétique » (Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres), Volume 210, Laboratoire de Mathématique de Besançon, 2010, pp. 29-57 | MR | Zbl

[8] Cohen, Henri Number theory. Volume II: Analytic and modern tools, Graduate Texts in Mathematics, 240, Springer, 2007

[9] Coleman, Robert F. Dilogarithms, Regulators and p-adic L-functions, Invent. Math., Volume 69 (1982), pp. 171-208 | Zbl | DOI | MR

[10] Colmez, Pierre Fonctions L p-adiques, Séminaire Bourbaki. Volume 1998/99. Exposés 850–864 (Astérisque), Volume 1998, Société Mathématique de France, 2000, pp. 21-58 | MR | Numdam | Zbl

[11] Diamond, Jack The p-adic log gamma function and p-adic Euler constants, Trans. Am. Math. Soc., Volume 233 (1977), pp. 321-337 | MR | Zbl

[12] Dwork, Bernard p-adic cycles, Publ. Math., Inst. Hautes Étud. Sci., Volume 37 (1969), pp. 27-115 | DOI | Numdam | Zbl

[13] Emerton, Matthew; Kisin, Mark An introduction to the Riemann-Hilbert correspondence for unit F-crystals, Geometric aspects of Dwork theory. Vol. I, II, Volume 677, Walter de Gruyter, 2004, pp. 677-700 | DOI | Zbl

[14] Fontaine, Jean-Marc; Messing, William p-adic periods and p-adic etale cohomology, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemporary Mathematics), Volume 67, American Mathematical Society, 1987, pp. 179-207 | DOI | Zbl

[15] Gross, Benedict H. On the Periods of Abelian Integrals and a Formula of Chowla and Selberg, Invent. Math., Volume 45 (1978), pp. 193-211 (with an appendix by David E. Rohrlich) | DOI | MR | Zbl

[16] Kato, Kazuya On p-adic vanishing cycles (application of ideas of Fontaine-Messing), Algebraic geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 207-251 | DOI | MR | Zbl

[17] Kato, Kazuya Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory, Johns Hopkins University Press, 1989, pp. 191-224 | Zbl

[18] Kedlaya, Kiran S. p-adic differential equations, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2010

[19] Kubota, Tomio; Leopoldt, Heinrich-Wolfgang Eine p-adische Theorie der Zetawerte. I. Einführung der p -adischen Dirichletschen L-Funktionen, J. Reine Angew. Math., Volume 214/215 (1964), pp. 328-339 | Zbl

[20] Mazur, Barry; Swinnerton-Dyer, Peter Arithmetic of Weil curves, Invent. Math., Volume 25 (1974), pp. 1-61 | DOI | MR | Zbl

[21] Nekovář, Jan; Nizioł, Wiesława Syntomic cohomology and p-adic regulators for varieties over p-adic fields, Algebra Number Theory, Volume 10 (2016) no. 8, pp. 1695-1790 (with appendices by L. Berger and F. Déglise) | DOI | MR | Zbl

[22] NIST Handbook of Mathematical Functions (Olver, Frank W. J.; Lozier, Daniel W.; Boisvert, Ronald F.; Clark, Charles W., eds.), Cambridge University Press, 2010 | Zbl

[23] Perrin-Riou, Bernadette Fonctions L p-adiques des représentations p-adiques, Astérisque, 229, Société Mathématique de France, 1995 | Numdam

[24] van der Put, Marius The cohomology of Monsky and Washnitzer, Introductions aux cohomologies p-adiques (Luminy, 1984) (Mémoires de la Société Mathématique de France. Nouvelle Série), Volume 23, Société Mathématique de France, 1986, pp. 33-59 | Numdam | Zbl

[25] Rogers, Mathew; Zudilin, Wadim From L-series of elliptic curves to Mahler measures, Compos. Math., Volume 148 (2012) no. 2, pp. 385-414 | DOI | MR | Zbl

[26] Ross, Raymond K 2 of Fermat curves with divisorial support at infinity, Compos. Math., Volume 91 (1994) no. 3, pp. 223-240 | Zbl | MR

[27] Scholl, Anthony J. Integral elements in K-theory and products of modular curves, The arithmetic and geometry of algebraic cycles (Banff, 1998) (NATO ASI Series. Series C. Mathematical and Physical Sciences), Kluwer Academic Publishers, 2000, pp. 467-489 | DOI | MR | Zbl

[28] Steenbrink, Joseph Limits of Hodge structures, Invent. Math., Volume 31 (1976) no. 3, pp. 229-257 | DOI | MR | Zbl

[29] Tsuji, Takeshi On p-adic nearby cycles of log smooth families, Bull. Soc. Math. Fr., Volume 128 (2000) no. 4, pp. 529-575 | DOI | MR | Numdam | Zbl

[30] Zucker, Steven Degeneration of Hodge bundles (after Steenbrink), Topics in transcendental algebraic geometry (Annals of Mathematics Studies), Volume 106, Princeton University Press, 1984, pp. 121-141 | MR | Zbl

Cité par Sources :