Lower bounds for regulators of number fields in terms of their discriminants
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 259-282

We prove inequalities that compare the regulator of a number field with the absolute value of its discriminant. We refine the ideas in Silverman’s work [15] where such general inequalities are first proven. In order to prove our main theorems, we combine these refinements with the authors’ previous results on bounding the product of heights of relative units in a number field extension.

Nous prouvons une inégalité qui compare le régulateur d’un corps de nombres et la valeur absolue de son discriminant. Nous affinons les idées de Silverman [15] où de telles inégalités ont été prouvées pour la première fois. Pour démontrer nos théorèmes principaux, nous combinons ces méthodes avec les bornes pour le produit des hauteurs des unités relatives d’une extension de corps de nombres démontrées dans notre article antérieur.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1245
Classification : 11G50, 11R04, 11R27
Keywords: Regulator and discriminant of a number field, Weil height, Arakelov height

Akhtari, Shabnam 1 ; Vaaler, Jeffrey D. 2

1 Department of Mathematics, University of Oregon, Eugene, Oregon 97403 USA
2 Department of Mathematics, University of Texas, Austin, Texas 78712 USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_1_259_0,
     author = {Akhtari, Shabnam and Vaaler, Jeffrey D.},
     title = {Lower bounds for regulators of number fields in terms of their discriminants},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {259--282},
     year = {2023},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {1},
     doi = {10.5802/jtnb.1245},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1245/}
}
TY  - JOUR
AU  - Akhtari, Shabnam
AU  - Vaaler, Jeffrey D.
TI  - Lower bounds for regulators of number fields in terms of their discriminants
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 259
EP  - 282
VL  - 35
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1245/
DO  - 10.5802/jtnb.1245
LA  - en
ID  - JTNB_2023__35_1_259_0
ER  - 
%0 Journal Article
%A Akhtari, Shabnam
%A Vaaler, Jeffrey D.
%T Lower bounds for regulators of number fields in terms of their discriminants
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 259-282
%V 35
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1245/
%R 10.5802/jtnb.1245
%G en
%F JTNB_2023__35_1_259_0
Akhtari, Shabnam; Vaaler, Jeffrey D. Lower bounds for regulators of number fields in terms of their discriminants. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 259-282. doi: 10.5802/jtnb.1245

[1] Akhtari, Shabnam; Vaaler, Jeffrey D. Heights, regulators and Schinzel’s determinant inequality, Acta Arith., Volume 172 (2016) no. 3, pp. 285-298 | MR | Zbl

[2] Akhtari, Shabnam; Vaaler, Jeffrey D. Independent relative units of low height, Acta Arith., Volume 2002 (2022) no. 4, pp. 389-401 | DOI | MR | Zbl

[3] Amoroso, Francesco; David, Sinnou Le théorème de Dobrowolski en dimension supérieure, C. R. Acad. Sci. Paris, Volume 326 (1998) no. 10, pp. 1163-1166 | DOI | Zbl

[4] Amoroso, Francesco; Viada, Evelina Small points on subvarieties of tori, Comment. Math. Helv., Volume 87 (2012) no. 2, pp. 355-383 | MR | Zbl | DOI

[5] Bombieri, Enrico; Gubler, Walter Heights in Diophantine Geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006

[6] Costa, Antone; Friedman, Eduardo Ratios of regulators in totally real extensions of number fields, J. Number Theory, Volume 37 (1991) no. 3, pp. 288-297 | DOI | MR | Zbl

[7] Costa, Antone; Friedman, Eduardo Ratios of regulators in extensions of number fields, Proc. Am. Math. Soc., Volume 119 (1993) no. 2, pp. 381-390 | DOI | Zbl | MR

[8] Cusick, Thomas W. Lower bounds for regulators, Number theory, Noordwijkerhout 1983 (Lecture Notes in Mathematics), Volume 1068, Springer, 1984, pp. 63-73 | DOI | MR | Zbl

[9] Dobrowolski, Edward On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith., Volume 34 (1979), pp. 391-401 | DOI | MR | Zbl

[10] Friedman, Eduardo Analytic formulas for the regulator of a number field, Invent. Math., Volume 98 (1989) no. 3, pp. 599-622 | DOI | MR | Zbl

[11] Narkiewicz, Władysław Elementary and Analytic Theory of Algebraic Numbers, Springer Monographs in Mathematics, Springer, 2010

[12] Pohst, Michael E. Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory, Volume 9 (1977), pp. 459-492 | DOI | Zbl

[13] Remak, Robert Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers, Compos. Math., Volume 10 (1952), pp. 245-285 | MR | Numdam | Zbl

[14] Silverman, Joseph H. The Thue equation and height functions, Approximations diophantiennes et nombres transcendants (Progress in Mathematics), Volume 31, Birkhäuser, 1983, pp. 259-270 | MR | Zbl

[15] Silverman, Joseph H. An inequality relating the regulator and the discriminant of a number field, J. Number Theory, Volume 19 (1984), pp. 437-442 | DOI | MR | Zbl

[16] Voutier, Paul M. An effective lower bound for the height of algebraic numbers, Acta Arith., Volume 74 (1996) no. 1, pp. 81-95 | DOI | MR | Zbl

Cité par Sources :