Spherical Heron triangles and elliptic curves
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 219-246

We define spherical Heron triangles (spherical triangles with “rational” side-lengths and angles) and parametrize them via rational points of certain families of elliptic curves. We show that the congruent number problem has infinitely many solutions for most areas in the spherical setting and we find a spherical Heron triangle with rational medians. We also explore the question of spherical triangles with a single rational median or a single a rational area bisector (median splitting the triangle in half), and discuss various problems involving isosceles spherical triangles.

Nous définissons les triangles de Héron sphériques (triangles sphériques avec des mesures de côtés et des angles « rationnels ») et les paramétrons par des points rationnels en certaines familles de courbes elliptiques. Nous montrons que le problème des nombres congruents a une infinité de solutions pour la plupart des valeurs de l’aire dans le cas sphérique et nous trouvons un triangle de Héron sphérique avec des médianes rationnelles. Nous explorons également la question des triangles sphériques avec une seule médiane rationnelle ou une seule bissectrice d’aire rationnelle (c’est-à-dire, une médiane divisant le triangle en deux), et nous discutons de divers problèmes impliquant des triangles sphériques isocèles.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1243
Classification : 11G05, 14J27, 14J28, 14H52, 11D25
Keywords: spherical triangles, elliptic curves, elliptic surfaces

Huang, Tinghao 1 ; Lalín, Matilde 2 ; Mila, Olivier 2

1 The Ohio State University (Columbus campus), Columbus, Ohio, 43210 The United States of America
2 Université de Montréal, Pavillon André-Aisenstadt, Département de mathématiques et de statistique, CP 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7 Canada
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_1_219_0,
     author = {Huang, Tinghao and Lal{\'\i}n, Matilde and Mila, Olivier},
     title = {Spherical {Heron} triangles and elliptic curves},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {219--246},
     year = {2023},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {1},
     doi = {10.5802/jtnb.1243},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1243/}
}
TY  - JOUR
AU  - Huang, Tinghao
AU  - Lalín, Matilde
AU  - Mila, Olivier
TI  - Spherical Heron triangles and elliptic curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 219
EP  - 246
VL  - 35
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1243/
DO  - 10.5802/jtnb.1243
LA  - en
ID  - JTNB_2023__35_1_219_0
ER  - 
%0 Journal Article
%A Huang, Tinghao
%A Lalín, Matilde
%A Mila, Olivier
%T Spherical Heron triangles and elliptic curves
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 219-246
%V 35
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1243/
%R 10.5802/jtnb.1243
%G en
%F JTNB_2023__35_1_219_0
Huang, Tinghao; Lalín, Matilde; Mila, Olivier. Spherical Heron triangles and elliptic curves. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 219-246. doi: 10.5802/jtnb.1243

[1] Balakrishnan, Jennifer S.; Dogra, Netan Quadratic Chabauty and rational points, I: p-adic heights, Duke Math. J., Volume 167 (2018) no. 11, pp. 1981-2038 (with an appendix by J. Steffen Müller) | DOI | MR | Zbl

[2] Beardon, Alan F.; Stephenson, Paul The Heron parameters of a triangle, Math. Gaz., Volume 99 (2015) no. 545, pp. 205-212 | DOI | MR | Zbl

[3] Bianchi, Francesca Quadratic Chabauty for (bi)elliptic curves and Kim’s conjecture, Algebra Number Theory, Volume 14 (2020) no. 9, pp. 2369-2416 | DOI | MR | Zbl

[4] Bremner, Andrew On Heron triangles, Ann. Math. Inform., Volume 33 (2006), pp. 15-21 | DOI | MR | Zbl

[5] Brody, Nicolas; Schettler, Jordan Rational hyperbolic triangles and a quartic model of elliptic curves, J. Number Theory, Volume 164 (2016), pp. 359-374 | DOI | MR | Zbl

[6] Buchholz, Ralph H. On Triangles With Rational Altitudes, Angle Bisectors Or Medians, Ph. D. Thesis, University of Newcastle, Australia (1989)

[7] Buchholz, Ralph H.; Rathbun, Randall L. An infinite set of Heron triangles with two rational medians, Am. Math. Mon., Volume 104 (1997) no. 2, pp. 107-115 | DOI | MR | Zbl

[8] Buchholz, Ralph H.; Rathbun, Randall L. Heron triangles and elliptic curves, Bull. Aust. Math. Soc., Volume 58 (1998) no. 3, pp. 411-421 | DOI | MR | Zbl

[9] Cassels, John W. S. Lectures on elliptic curves, London Mathematical Society Student Texts, 24, Cambridge University Press, 1991, vi+137 pages | DOI | MR

[10] Dujella, Andrej; Peral, Juan Carlos Elliptic curves and triangles with three rational medians, J. Number Theory, Volume 133 (2013) no. 6, pp. 2083-2091 | DOI | MR | Zbl

[11] Dujella, Andrej; Peral, Juan Carlos Elliptic curves coming from Heron triangles, Rocky Mt. J. Math., Volume 44 (2014) no. 4, pp. 1145-1160 | DOI | MR | Zbl

[12] Euler, Leonhard Investigatio trianguli in quo distantiae angulorum ab eius centro gravitatis rationaliter exprimantur, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, Volume 12 (1801), pp. 101-113

[13] Flynn, E. Victor; Wetherell, Joseph L. Finding rational points on bielliptic genus 2 curves, Manuscr. Math., Volume 100 (1999) no. 4, pp. 519-533 | DOI | MR | Zbl

[14] Goins, Edray Herber; Maddox, Davin Heron triangles via elliptic curves, Rocky Mt. J. Math., Volume 36 (2006) no. 5, pp. 1511-1526 | DOI | MR | Zbl

[15] Guy, Richard K. My favorite elliptic curve: a tale of two types of triangles, Am. Math. Mon., Volume 102 (1995) no. 9, pp. 771-781 | DOI | MR | Zbl

[16] Halbeisen, Lorenz; Hungerbühler, Norbert Heron triangles and their elliptic curves, J. Number Theory, Volume 213 (2020), pp. 232-253 | DOI | MR | Zbl

[17] Hartshorne, Robin; van Luijk, Ronald Non-Euclidean Pythagorean triples, a problem of Euler, and rational points on K3 surfaces, Math. Intell., Volume 30 (2008) no. 4, pp. 4-10 | DOI | MR | Zbl

[18] Ionascu, Eugen J.; Luca, Florian; Stănică, Pantelimon Heron triangles with two fixed sides, J. Number Theory, Volume 126 (2007) no. 1, pp. 52-67 | DOI | MR | Zbl

[19] Ismail, Shahrina Perfect triangles on the curve C 4 , J. Aust. Math. Soc., Volume 109 (2020) no. 1, pp. 68-80 | DOI | Zbl | MR

[20] Izadi, Farzali; Nabardi, Kamran A family of elliptic curves with rank 5, Period. Math. Hung., Volume 71 (2015) no. 2, pp. 243-249 | Zbl | MR | DOI

[21] Kramer, Alpar-Vajk; Luca, Florian Some remarks on Heron triangles, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.), Volume 27 (2000), pp. 25-38 | Zbl | MR

[22] Laflamme, Jeanne; Lalín, Matilde On Ceva points of (almost) equilateral triangles, J. Number Theory, Volume 222 (2021), pp. 48-74 | Zbl | MR | DOI

[23] Lalín, Matilde; Mila, Olivier Hyperbolic Heron triangles and elliptic curves, J. Number Theory, Volume 240 (2022), pp. 272-295 | Zbl | MR | DOI

[24] van Luijk, Ronald An elliptic K3 surface associated to Heron triangles, J. Number Theory, Volume 123 (2007) no. 1, pp. 92-119 | Zbl | MR | DOI

[25] Mazur, Barry Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 33-186 | DOI | Numdam | Zbl | MR

[26] Mazur, Barry Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math., Volume 44 (1978) no. 2, pp. 129-162 | Zbl | MR | DOI

[27] Miranda, Rick; Persson, Ulf Torsion groups of elliptic surfaces, Compos. Math., Volume 72 (1989) no. 3, pp. 249-267 | Numdam | Zbl | MR

[28] Sastry, K. R. S. Heron triangles: a new perspective, Aust. Math. Soc. Gaz., Volume 26 (1999) no. 4, pp. 160-168 | Zbl | MR

[29] Schütt, Matthias; Shioda, Tetsuji Mordell-Weil lattices, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 70, Springer, 2019, xvi+431 pages | MR | DOI

[30] Shioda, Tetsuji On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 2, pp. 211-240 | Zbl | MR

[31] Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | MR | DOI

[32] Skolem, Thoralf Diophantische Gleichungen, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5, New Chelsea Publishing Company, 1950

[33] Stănică, Pantelimon; Sarkar, Santanu; Sen Gupta, Sourav; Maitra, Subhamoy; Kar, Nirupam Counting Heron triangles with constraints, Integers, Volume 13 (2013), A3, 17 pages | Zbl | MR

[34] Todhunter, Isaac Spherical Trigonometry (Fifth Edition), Macmillan & Co., 1886

Cité par Sources :