Brauer–Manin obstruction for zero-cycles on certain varieties
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 151-166

We investigate the question of whether the existence of a family of local zero-cycles of degree d orthogonal to the Brauer group implies the non-emptiness of the Brauer–Manin set for certain varieties. We provide various examples of Brauer–Manin obstruction to the existence of zero-cycles of appropriate degrees.

Pour certaines variétés, nous étudions la question de savoir si l’existence d’une famille de zéro-cycles locaux de degré d orthogonaux au groupe de Brauer implique la non-vacuité de l’ensemble de Brauer–Manin. Nous fournissons divers exemples d’obstructions de Brauer–Manin à l’existence de zéro-cycles de degrés appropriés.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1241
Classification : 11G25, 11G35, 14F22, 14J28
Keywords: Brauer–Manin obstruction, zero-cycles

Ieronymou, Evis 1

1 Department of Mathematics and Statistics University of Cyprus P.O. Box 20537 1678, Nicosia, Cyprus
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_1_151_0,
     author = {Ieronymou, Evis},
     title = {Brauer{\textendash}Manin obstruction for zero-cycles on certain varieties},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {151--166},
     year = {2023},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {1},
     doi = {10.5802/jtnb.1241},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1241/}
}
TY  - JOUR
AU  - Ieronymou, Evis
TI  - Brauer–Manin obstruction for zero-cycles on certain varieties
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 151
EP  - 166
VL  - 35
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1241/
DO  - 10.5802/jtnb.1241
LA  - en
ID  - JTNB_2023__35_1_151_0
ER  - 
%0 Journal Article
%A Ieronymou, Evis
%T Brauer–Manin obstruction for zero-cycles on certain varieties
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 151-166
%V 35
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1241/
%R 10.5802/jtnb.1241
%G en
%F JTNB_2023__35_1_151_0
Ieronymou, Evis. Brauer–Manin obstruction for zero-cycles on certain varieties. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 151-166. doi: 10.5802/jtnb.1241

[1] Bremner, Andrew Some quartic curves with no points in any cubic field, Proc. Lond. Math. Soc., Volume 52 (1986) no. 2, pp. 193-214 | DOI | MR | Zbl

[2] Cassels, John W. S. The arithmetic of certain quartic curves, Proc. R. Soc. Edinb., Sect. A, Math., Volume 100 (1985) no. 3-4, pp. 201-218 | Zbl | MR | DOI

[3] Colliot-Thélène, Jean-Louis Hilbert’s Theorem 90 for K 2 , with application to the Chow groups of rational surfaces, Invent. Math., Volume 71 (1983) no. 1, pp. 1-20 | DOI | MR | Zbl

[4] Colliot-Thélène, Jean-Louis L’arithmétique du groupe de Chow des zéro-cycles, J. Théor. Nombres Bordeaux, Volume 7 (1995) no. 1, pp. 51-73 Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993) | DOI | Numdam | Zbl

[5] Colliot-Thélène, Jean-Louis Points rationnels sur les fibrations, Higher dimensional varieties and rational points (Budapest, 2001) (Bolyai Society Mathematical Studies), Volume 12, Springer, 2003, pp. 171-221 | DOI | MR | Zbl

[6] Colliot-Thélène, Jean-Louis Zéro-cycles sur les surfaces de del Pezzo (Variations sur un thème de Daniel Coray), Enseign. Math., Volume 66 (2020) no. 3-4, pp. 447-487 | Zbl

[7] Colliot-Thélène, Jean-Louis; Coray, Daniel L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques, Compos. Math., Volume 39 (1979) no. 3, pp. 301-332 | Numdam | Zbl

[8] Colliot-Thélène, Jean-Louis; Coray, Daniel; Sansuc, Jean-Jacques Descente et principe de Hasse pour certaines variétés rationnelles, J. Reine Angew. Math., Volume 320 (1980), pp. 150-191 | Zbl

[9] Colliot-Thélène, Jean-Louis; Kanevsky, Dimitri; Sansuc, Jean-Jacques Arithmétique des surfaces cubiques diagonales, Diophantine approximation and transcendence theory, Semin., Bonn/FRG 1985 (Lecture Notes in Mathematics), Volume 1290, Springer, 1987, pp. 1-108 | Zbl | DOI

[10] Colliot-Thélène, Jean-Louis; Poonen, Bjorn Algebraic families of nonzero elements of Shafarevich-Tate groups, J. Am. Math. Soc., Volume 13 (2000) no. 1, pp. 83-99 | DOI | MR | Zbl

[11] Colliot-Thélène, Jean-Louis; Sansuc, Jean-Jacques On the Chow groups of certain rational surfaces: A sequel to a paper of S. Bloch, Duke Math. J., Volume 48 (1981) no. 2, pp. 421-447 | MR | Zbl

[12] Colliot-Thélène, Jean-Louis; Sansuc, Jean-Jacques; Swinnerton-Dyer, Peter Intersections of two quadrics and Châtelet surfaces. I, J. Reine Angew. Math., Volume 373 (1987), pp. 37-107 | Zbl

[13] Colliot-Thélène, Jean-Louis; Swinnerton-Dyer, Peter Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. Reine Angew. Math., Volume 453 (1994), pp. 49-112 | MR | Zbl

[14] Coray, Daniel; Manoil, Constantin On large Picard groups and the Hasse principle for curves and K3 surfaces, Acta Arith., Volume 76 (1996) no. 2, pp. 165-189 | DOI | MR

[15] Hironaka, Heisuke Resolution of singularities of an algebraic variety over a field of characteristic zero I, Ann. Math., Volume 79 (1964), pp. 109-203

[16] Ieronymou, Evis Evaluation of Brauer elements over local fields, Math. Ann., Volume 382 (2022) no. 1-2, pp. 239-254

[17] Jahnel, Jörg Brauer groups, Tamagawa measures, and rational points on algebraic varieties, Mathematical Surveys and Monographs, 198, American Mathematical Society, 2014, viii+267 pages

[18] Kato, Kazuya; Saito, Shuji Global class field theory of arithmetic schemes, Applications of algebraic K-theory to algebraic geometry and number theory (Boulder, Colo., 1983) (Contemporary Mathematics), Volume 55, American Mathematical Society, 1983, pp. 255-331

[19] Kollár, János Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32, Springer, 1996

[20] Kresch, Andrew; Tschinkel, Yuri On the arithmetic of del Pezzo surfaces of degree 2, Proc. Lond. Math. Soc., Volume 89 (2004) no. 3, pp. 545-569

[21] Milne, James S. Arithmetic duality theorems, BookSurge, 2006, viii+339 pages

[22] Nguyen, Ngoc Dong Quan The arithmetic of certain del Pezzo surfaces and K3 surfaces, J. Théor. Nombres Bordeaux, Volume 24 (2012) no. 2, pp. 447-460

[23] Rivera, Carlos; Viray, Bianca Persistence of the Brauer-Manin obstruction on cubic surfaces (2021) | arXiv

[24] Salberger, Per; Skorobogatov, Alexei N. Weak approximation for surfaces defined by two quadratic forms, Duke Math. J., Volume 63 (1991) no. 2, pp. 517-536

[25] Serre, Jean-Pierre Local fields, Graduate Texts in Mathematics, Springer, 1979, viii+241 pages (translated from the French by Marvin Jay Greenberg)

[26] Skorobogatov, Alexei N. Torsors and rational points, Cambridge Tracts in Mathematics, 144, Cambridge University Press, 2001, viii+187 pages

[27] Skorobogatov, Alexei N. Diagonal quartic surfaces, Oberwolfach Rep., Volume 33 (2009), pp. 76-79

[28] Swinnerton-Dyer, Peter The Brauer group of cubic surfaces, Math. Proc. Camb. Philos. Soc., Volume 113 (1993) no. 3, pp. 449-460

[29] Wittenberg, Olivier Zéro-cycles sur les fibrations au-dessus d’une courbe de genre quelconque, Duke Math. J., Volume 161 (2012) no. 11, pp. 2113-2166

Cité par Sources :