Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 115-134

Generalising results of Erdős–Freud and Lindström, we prove that the largest Sidon subset of a bounded interval of integers is equidistributed in Bohr neighbourhoods. We establish this by showing that extremal Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial Fourier coefficients. As a further application we deduce that, for any partition regular equation in five or more variables, every finite colouring of an extremal Sidon set has a monochromatic solution.

En généralisant des résultats d’Erdős–Freud et Lindström, nous prouvons que le plus grand sous-ensemble de Sidon d’un intervalle d’entiers borné est équidistribué dans des voisinages de Bohr. Nous le faisons en montrant que les ensembles de Sidon extrémaux sont Fourier-pseudo-aléatoires, dans le sens qu’ils n’ont pas de coefficients de Fourier grands non triviaux. Comme application, nous en déduisons que pour une equation régulière à cinq variables et plus, toute coloration finie d’un ensemble extrémal de Sidon a une solution monochromatique.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1239
Classification : 11B30, 11B25
Keywords: Sidon sets, pseudorandomness, equidistribution, partition regularity

Ortega, Miquel 1 ; Prendiville, Sean 2

1 Departament de Matemàtiques Universitat Politècnica de Catalunya 08028, Barcelona, Spain
2 Department of Mathematics and Statistics Lancaster University LA1 4YF UK
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_1_115_0,
     author = {Ortega, Miquel and Prendiville, Sean},
     title = {Extremal {Sidon} {Sets} are {Fourier} {Uniform,} with {Applications} to {Partition} {Regularity}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {115--134},
     year = {2023},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {1},
     doi = {10.5802/jtnb.1239},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1239/}
}
TY  - JOUR
AU  - Ortega, Miquel
AU  - Prendiville, Sean
TI  - Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 115
EP  - 134
VL  - 35
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1239/
DO  - 10.5802/jtnb.1239
LA  - en
ID  - JTNB_2023__35_1_115_0
ER  - 
%0 Journal Article
%A Ortega, Miquel
%A Prendiville, Sean
%T Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 115-134
%V 35
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1239/
%R 10.5802/jtnb.1239
%G en
%F JTNB_2023__35_1_115_0
Ortega, Miquel; Prendiville, Sean. Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 115-134. doi: 10.5802/jtnb.1239

[1] Baker, Roger C.; Harman, Glyn; Pintz, Janos The difference between consecutive primes. II, Proc. Lond. Math. Soc., Volume 83 (2001) no. 3, pp. 532-562 | Zbl | DOI | MR

[2] Bourgain, Jean On triples in arithmetic progression, Geom. Funct. Anal., Volume 9 (1999) no. 5, pp. 968-984 | Zbl | DOI | MR

[3] Cilleruelo, Javier Gaps in dense Sidon sets, Integers, Volume 0 (2000), A11, 6 pages | MR | Zbl

[4] Conlon, David; Fox, Jacob; Sudakov, Benny; Zhao, Yufei The regularity method for graphs with few 4-cycles, J. Lond. Math. Soc., Volume 104 (2021) no. 5, pp. 2376-2401 | DOI | MR | Zbl

[5] Conlon, David; Fox, Jacob; Sudakov, Benny; Zhao, Yufei Which graphs can be counted in C 4 -free graphs? (2021) (https://arxiv.org/abs/2106.03261)

[6] Conlon, David; Gowers, William T. Combinatorial theorems in sparse random sets, Ann. Math., Volume 184 (2016) no. 2, pp. 367-454 | MR | Zbl | DOI

[7] Eberhard, Sean The apparent structure of dense Sidon sets talk given at CANT (2021), https://youtu.be/s4ItIkkUvF4

[8] Eberhard, Sean; Manners, Freddie The apparent structure of dense Sidon sets (2021) (https://arxiv.org/abs/2107.05744)

[9] Erdős, Paul; Freud, Robert On sums of a Sidon-sequence, J. Number Theory, Volume 38 (1991) no. 2, pp. 196-205 | MR | Zbl | DOI

[10] Erdős, Paul; Turán, Pál On a problem of Sidon in additive number theory, and on some related problems, J. Lond. Math. Soc., Volume 16 (1941), pp. 212-215 | DOI | MR | Zbl

[11] Forey, Arthur; Kowalski, Emmanuel Algebraic curves in their Jacobian are Sidon sets (2021) (https://arxiv.org/abs/2103.04917)

[12] Frankl, Peter; Graham, Ronald L.; Rödl, Vojtěch Quantitative theorems for regular systems of equations, J. Comb. Theory, Volume 47 (1988) no. 2, pp. 246-261 | DOI | MR | Zbl

[13] Gowers, William T. What are dense Sidon subsets of {1,2,...,n} like?, 2012 (blogpost available at https://bit.ly/3xHq2NM)

[14] Graham, Ronald L.; Rothschild, Bruce L.; Spencer, Joel H. Ramsey theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, 1990

[15] Keevash, Peter; Sudakov, Benny; Verstraëte, Jacques On a conjecture of Erdős and Simonovits: Even cycles, Combinatorica, Volume 33 (2013) no. 6, pp. 699-732 | Zbl | DOI

[16] Kolountzakis, Mihail N. On the uniform distribution in residue classes of dense sets of integers with distinct sums, J. Number Theory, Volume 76 (1999) no. 1, pp. 147-153 | DOI | MR | Zbl

[17] Lindström, Bernt Well distribution of Sidon sets in residue classes, J. Number Theory, Volume 69 (1998) no. 2, pp. 197-200 | DOI | MR | Zbl

[18] Montgomery, Hugh L. Ten lectures on the interface between analytic number theory and harmonic analysis, Regional Conference Series in Mathematics, 84, American Mathematical Society, 1994

[19] O’Bryant, Kevin A complete annotated bibliography of work related to Sidon sequences, Electron. J. Comb., Volume DS11 (2004) | MR | Zbl

[20] Prendiville, Sean Solving equations in dense Sidon sets, Math. Proc. Camb. Philos. Soc., Volume 173 (2022) no. 1, pp. 25-34 | DOI | Zbl | MR

[21] Roth, Klaus F. On certain sets of integers. II, Integers, Volume 29 (1954), pp. 20-26 | MR | Zbl

[22] Singer, James A theorem in finite projective geometry and some applications to number theory, Trans. Am. Math. Soc., Volume 43 (1938), pp. 377-385 | DOI | MR | Zbl

[23] Tao, Terence; Vu, Van H. Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2006

Cité par Sources :