For a finite abelian group the Harborth constant is the smallest integer such that each squarefree sequence over of length , equivalently each subset of of cardinality at least , has a subsequence of length whose sum is . In this paper, it is established that for prime and .
Soit un groupe abélien fini. La constante de Harborth de , notée , est le plus petit entier tel que toute suite d’éléments deux à deux distincts de de longueur , de manière équivalente tout sous-ensemble de de cardinal au moins , admet une sous-suite de longueur dont la somme soit . Dans cet article, il est démontré que pour tout nombre premier et que .
Révisé le :
Accepté le :
Publié le :
Keywords: finite abelian group, zero-sum problem, Harborth constant, squarefree sequence
Guillot, Philippe 1, 2 ; Marchan, Luz E. 3 ; Ordaz, Oscar 4 ; Schmid, Wolfgang A. 1, 2 ; Zerdoum, Hanane 1, 2
CC-BY-ND 4.0
@article{JTNB_2019__31_3_613_0,
author = {Guillot, Philippe and Marchan, Luz E. and Ordaz, Oscar and Schmid, Wolfgang A. and Zerdoum, Hanane},
title = {On the {Harborth} constant of $C_3 \oplus C_{3p}$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {613--633},
year = {2019},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {31},
number = {3},
doi = {10.5802/jtnb.1097},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1097/}
}
TY - JOUR
AU - Guillot, Philippe
AU - Marchan, Luz E.
AU - Ordaz, Oscar
AU - Schmid, Wolfgang A.
AU - Zerdoum, Hanane
TI - On the Harborth constant of $C_3 \oplus C_{3p}$
JO - Journal de théorie des nombres de Bordeaux
PY - 2019
SP - 613
EP - 633
VL - 31
IS - 3
PB - Société Arithmétique de Bordeaux
UR - https://www.numdam.org/articles/10.5802/jtnb.1097/
DO - 10.5802/jtnb.1097
LA - en
ID - JTNB_2019__31_3_613_0
ER -
%0 Journal Article
%A Guillot, Philippe
%A Marchan, Luz E.
%A Ordaz, Oscar
%A Schmid, Wolfgang A.
%A Zerdoum, Hanane
%T On the Harborth constant of $C_3 \oplus C_{3p}$
%J Journal de théorie des nombres de Bordeaux
%D 2019
%P 613-633
%V 31
%N 3
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1097/
%R 10.5802/jtnb.1097
%G en
%F JTNB_2019__31_3_613_0
Guillot, Philippe; Marchan, Luz E.; Ordaz, Oscar; Schmid, Wolfgang A.; Zerdoum, Hanane. On the Harborth constant of $C_3 \oplus C_{3p}$. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 613-633. doi: 10.5802/jtnb.1097
[1] Additive Combinatorics, A Menu of Research Problems, Discrete Mathematics and its Applications, CRC Press, 2018 | Zbl
[2] Progression-free sets in are exponentially small, Ann. Math., Volume 185 (2017) no. 1, pp. 331-337 | DOI | Zbl
[3] Zero-sum problems in finite abelian groups and affine caps, Q. J. Math, Volume 58 (2007) no. 2, pp. 159-186 | MR | DOI | Zbl
[4] On large subsets of with no three-term arithmetic progression, Ann. Math., Volume 185 (2017) no. 1, pp. 339-343 | DOI | Zbl
[5] A theorem in additive number theory, Bull. Res. Council Israel, Volume 10F (1961), pp. 41-43 | MR | Zbl
[6] Zero-sum problems in finite abelian groups: a survey, Expo. Math., Volume 24 (2006) no. 4, pp. 337-369 | MR | Zbl
[7] Inverse zero-sum problems, Acta Arith., Volume 128 (2007) no. 3, pp. 245-279 | MR | Zbl
[8] A variant of Kemnitz conjecture, J. Comb. Theory, Ser. A, Volume 107 (2004) no. 1, pp. 69-86 | MR | Zbl
[9] Additive group theory and non-unique factorizations, Combinatorial number theory and additive group theory (Advanced Courses in Mathematics - CRM Barcelona), Birkhäuser, 2009, pp. 1-86 | Zbl
[10] Structural Additive Theory, Developments in Mathematics, 30, Springer, 2013 | MR | Zbl
[11] Ein Extremalproblem für Gitterpunkte, J. Reine Angew. Math., Volume 262-263 (1973), pp. 356-360 | MR | Zbl
[12] On a lattice point problem, Ars Comb., Volume 16-B (1983), pp. 151-160 | MR | Zbl
[13] Examining the maximum size of zero--sum-free subsets, Research Papers in Mathematics, Volume 19, Gettysburg College, 2016
[14] Some exact values of the Harborth constant and its plus-minus weighted analogue, Arch. Math., Volume 101 (2013) no. 6, pp. 501-512 | MR | DOI | Zbl
[15] Maximal caps in , Des. Codes Cryptography, Volume 46 (2008) no. 3, pp. 243-259 | MR | DOI | Zbl
Cité par Sources :





