Let be a finite field of characteristic . We study variations in slope zero multiplicities of the components of the Dieudonné module (or equivalently the -divisible group) of the Jacobian of the -th Carlitz cyclotomic extension of , as we vary the prime of . We also give some applications to the question of ordinariness and of -ranks of the factors of these Jacobians. We do this, guided by numerical experiments, by proving and guessing some interesting structural patterns in prime factorizations of power sums representing the leading terms of the Goss zeta function at negative integers.
Soit un corps fini de caractéristique . Nous étudions la variation de la multiplicité de la pente nulle dans les composantes du module de Dieudonné (c’est-à-dire, du groupe -divisible) associé à la Jacobienne de l’extension cyclotomique de Carlitz d’ordre de quand on fait varier l’idéal premier de . Nous donnons quelques applications aux questions d’ordinarité et de calcul du -rang des facteurs de ces Jacobiennes. Guidé par des expériences numériques, nous arrivons à nos résultats en démontrant et en conjecturant des propriétes structurales de la décomposition en facteurs premiers des sommes de puissances donnant les coefficients directeurs des valeurs de la fonction zêta de Goss aux entiers négatifs.
Revised:
Accepted:
Published online:
Mots-clés : Bernoulli number, Artin–Schreier polynomial, Herbrand–Ribet theorem, Carlitz cyclotomic field, Hasse–Witt invariant, Goss $\zeta $-function, power sum, ordinariness
@article{JTNB_2017__29_3_963_0, author = {B\"ockle, Gebhard and Thakur, Dinesh S.}, title = {Leading coefficient of the {Goss} {Zeta} value and $p$-ranks of {Jacobians} of {Carlitz} cyclotomic covers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {963--995}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.1008}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1008/} }
TY - JOUR AU - Böckle, Gebhard AU - Thakur, Dinesh S. TI - Leading coefficient of the Goss Zeta value and $p$-ranks of Jacobians of Carlitz cyclotomic covers JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 963 EP - 995 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1008/ DO - 10.5802/jtnb.1008 LA - en ID - JTNB_2017__29_3_963_0 ER -
%0 Journal Article %A Böckle, Gebhard %A Thakur, Dinesh S. %T Leading coefficient of the Goss Zeta value and $p$-ranks of Jacobians of Carlitz cyclotomic covers %J Journal de théorie des nombres de Bordeaux %D 2017 %P 963-995 %V 29 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1008/ %R 10.5802/jtnb.1008 %G en %F JTNB_2017__29_3_963_0
Böckle, Gebhard; Thakur, Dinesh S. Leading coefficient of the Goss Zeta value and $p$-ranks of Jacobians of Carlitz cyclotomic covers. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 963-995. doi : 10.5802/jtnb.1008. https://www.numdam.org/articles/10.5802/jtnb.1008/
[1] The distribution of the zeros of the Goss zeta-function for , Math. Z., Volume 275 (2013) no. 3-4, pp. 835-861 | DOI | Zbl
[2] Cohomological theory of crystals over function fields and applications, Arithmetic Geometry over Global Function Fields (CRM Barcelona 2010) (Advanced Courses in Mathematics), Birkhäuser, 2014
[3] Cohomological theory of crystals over function fields, EMS Tracts in Mathematics, 9, European Mathematical Society, 2009, viii+187 pages | Zbl
[4] Handbook of Magma functions (Bosma, Wieb; Cannon, John J.; Fieker, C.; Steel, A., eds.), 2010, 5017 pages (Edition 2.16)
[5] Sums of products of multinomial coefficients, Elem. Math., Volume 18 (1963), pp. 37-39 | Zbl
[6] Complex multiplication and lifting problems, Mathematical Surveys and Monographs, 195, American Mathematical Society, 2014, ix+387 pages | Zbl
[7] The class number of cyclotomic function fields, J. Number Theory, Volume 13 (1981), pp. 363-375 | DOI | Zbl
[8] On power sums of polynomials over finite fields, J. Number Theory, Volume 30 (1988) no. 1, pp. 11-26 | DOI | Zbl
[9] Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 35, Springer, 1996, xiii+422 pages | Zbl
[10] Class groups of function fields, Duke Math. J., Volume 52 (1985), pp. 507-516 | DOI | Zbl
[11] Abelian varieties with group action, J. Reine Angew. Math., Volume 575 (2004), pp. 135-155 | Zbl
[12] On the Hasse-Witt matrix of an algebraic curve, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 25 (1961), p. 1513-172 English translation in Amer. Math. Soc. Transl. 45 (1965), p. 245-264 | Zbl
[13] Maple mathematics software (a division of Waterloo Maple Inc., Waterloo, Ontario.)
[14] Maxima, a Computer Algebra System. Version 5.34.1, 2014 (http://maxima.sourceforge.net/)
[15] How can we construct abelian Galois extensions of basic number fields?, Bull. Am. Math. Soc., Volume 48 (2011) no. 2, pp. 155-209 | DOI | Zbl
[16] Number theory in function fields, Graduate Texts in Mathematics, 210, Springer, 2002, xii+358 pages | Zbl
[17] The Hasse-Witt invariant of cyclotomic function fields, Acta Arith., Volume 150 (2011) no. 3, pp. 227-240 | DOI | Zbl
[18] Ordinary cyclotomic function fields, J. Number Theory, Volume 133 (2013) no. 2, pp. 523-533 | DOI | Zbl
[19] Die Hasse-Witt Invariante eines Kongruenzfunktionenkörpers, Arch. Math., Volume 33 (1980), pp. 357-360 | DOI | Zbl
[20] A Herbrand-Ribet theorem for function fields, Invent. Math., Volume 188 (2012) no. 2, pp. 253-275 | DOI | Zbl
[21] On multinomial coefficients, Am. Math. Mon., Volume 70 (1963), 1058.1063 pages | DOI | Zbl
[22] Function Field Arithmetic, World Scientific, 2004, xv+388 pages | Zbl
[23] Power sums with applications to multizeta and zeta zero distribution for , Finite Fields Appl., Volume 15 (2009) no. 4, pp. 534-552 | DOI | Zbl
[24] Valuations of -adic power sums and zero distribution for the Goss’ -adic zeta function for , J. Integer Seq., Volume 16 (2013) no. 2 (Article 13.2.13, 18 p.) | Zbl
[25] SageMath, the Sage Mathematics Software System (Version 6.2), 2014 (http://www.sagemath.org/)
[26] Abelian varieties over finite fields, Ann. Sci. Éc. Norm. Supér., Volume 2 (1969), pp. 521-560 | DOI | Zbl
Cited by Sources: